diff --git a/.github/workflows/autoblack.yml b/.github/workflows/autoblack.yml index 8d0282650..3ad4cf408 100644 --- a/.github/workflows/autoblack.yml +++ b/.github/workflows/autoblack.yml @@ -12,10 +12,10 @@ jobs: if: github.repository_owner == 'explosion' runs-on: ubuntu-latest steps: - - uses: actions/checkout@v2 + - uses: actions/checkout@v3 with: ref: ${{ github.head_ref }} - - uses: actions/setup-python@v2 + - uses: actions/setup-python@v3 - run: pip install black - name: Auto-format code if needed run: black spacy @@ -23,10 +23,11 @@ jobs: # code and makes GitHub think the action failed - name: Check for modified files id: git-check - run: echo ::set-output name=modified::$(if git diff-index --quiet HEAD --; then echo "false"; else echo "true"; fi) + run: echo modified=$(if git diff-index --quiet HEAD --; then echo "false"; else echo "true"; fi) >> $GITHUB_OUTPUT + - name: Create Pull Request if: steps.git-check.outputs.modified == 'true' - uses: peter-evans/create-pull-request@v3 + uses: peter-evans/create-pull-request@v4 with: title: Auto-format code with black labels: meta diff --git a/README.md b/README.md index d9ef83e01..abfc3da67 100644 --- a/README.md +++ b/README.md @@ -8,7 +8,7 @@ be used in real products. spaCy comes with [pretrained pipelines](https://spacy.io/models) and -currently supports tokenization and training for **60+ languages**. It features +currently supports tokenization and training for **70+ languages**. It features state-of-the-art speed and **neural network models** for tagging, parsing, **named entity recognition**, **text classification** and more, multi-task learning with pretrained **transformers** like BERT, as well as a @@ -16,7 +16,7 @@ production-ready [**training system**](https://spacy.io/usage/training) and easy model packaging, deployment and workflow management. spaCy is commercial open-source software, released under the MIT license. -💫 **Version 3.4.0 out now!** +💫 **Version 3.4 out now!** [Check out the release notes here.](https://github.com/explosion/spaCy/releases) [![Azure Pipelines](https://img.shields.io/azure-devops/build/explosion-ai/public/8/master.svg?logo=azure-pipelines&style=flat-square&label=build)](https://dev.azure.com/explosion-ai/public/_build?definitionId=8) @@ -79,7 +79,7 @@ more people can benefit from it. ## Features -- Support for **60+ languages** +- Support for **70+ languages** - **Trained pipelines** for different languages and tasks - Multi-task learning with pretrained **transformers** like BERT - Support for pretrained **word vectors** and embeddings diff --git a/azure-pipelines.yml b/azure-pipelines.yml index 357cce835..eea07cb7a 100644 --- a/azure-pipelines.yml +++ b/azure-pipelines.yml @@ -76,15 +76,15 @@ jobs: # Python39Mac: # imageName: "macos-latest" # python.version: "3.9" - Python310Linux: - imageName: "ubuntu-latest" - python.version: "3.10" + # Python310Linux: + # imageName: "ubuntu-latest" + # python.version: "3.10" Python310Windows: imageName: "windows-latest" python.version: "3.10" - Python310Mac: - imageName: "macos-latest" - python.version: "3.10" + # Python310Mac: + # imageName: "macos-latest" + # python.version: "3.10" Python311Linux: imageName: 'ubuntu-latest' python.version: '3.11.0-rc.2' diff --git a/spacy/ml/models/entity_linker.py b/spacy/ml/models/entity_linker.py index 4d18d216a..299b6bb52 100644 --- a/spacy/ml/models/entity_linker.py +++ b/spacy/ml/models/entity_linker.py @@ -71,11 +71,10 @@ def span_maker_forward(model, docs: List[Doc], is_train) -> Tuple[Ragged, Callab cands.append((start_token, end_token)) candidates.append(ops.asarray2i(cands)) - candlens = ops.asarray1i([len(cands) for cands in candidates]) - candidates = ops.xp.concatenate(candidates) - outputs = Ragged(candidates, candlens) + lengths = model.ops.asarray1i([len(cands) for cands in candidates]) + out = Ragged(model.ops.flatten(candidates), lengths) # because this is just rearranging docs, the backprop does nothing - return outputs, lambda x: [] + return out, lambda x: [] @registry.misc("spacy.KBFromFile.v1") diff --git a/spacy/pipeline/textcat.py b/spacy/pipeline/textcat.py index 506cdb61c..2885447f7 100644 --- a/spacy/pipeline/textcat.py +++ b/spacy/pipeline/textcat.py @@ -27,8 +27,8 @@ single_label_default_config = """ [model.tok2vec.embed] @architectures = "spacy.MultiHashEmbed.v2" width = 64 -rows = [2000, 2000, 1000, 1000, 1000, 1000] -attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"] +rows = [2000, 2000, 500, 1000, 500] +attrs = ["NORM", "LOWER", "PREFIX", "SUFFIX", "SHAPE"] include_static_vectors = false [model.tok2vec.encode] diff --git a/spacy/pipeline/textcat_multilabel.py b/spacy/pipeline/textcat_multilabel.py index a69937a0c..3ba80653e 100644 --- a/spacy/pipeline/textcat_multilabel.py +++ b/spacy/pipeline/textcat_multilabel.py @@ -24,8 +24,8 @@ multi_label_default_config = """ [model.tok2vec.embed] @architectures = "spacy.MultiHashEmbed.v2" width = 64 -rows = [2000, 2000, 1000, 1000, 1000, 1000] -attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"] +rows = [2000, 2000, 500, 1000, 500] +attrs = ["NORM", "LOWER", "PREFIX", "SUFFIX", "SHAPE"] include_static_vectors = false [model.tok2vec.encode] diff --git a/spacy/tests/pipeline/test_entity_linker.py b/spacy/tests/pipeline/test_entity_linker.py index a6baa1ff4..9a8ce6653 100644 --- a/spacy/tests/pipeline/test_entity_linker.py +++ b/spacy/tests/pipeline/test_entity_linker.py @@ -10,6 +10,7 @@ from spacy.compat import pickle from spacy.kb import Candidate, InMemoryLookupKB, get_candidates, KnowledgeBase from spacy.lang.en import English from spacy.ml import load_kb +from spacy.ml.models.entity_linker import build_span_maker from spacy.pipeline import EntityLinker, TrainablePipe from spacy.pipeline.legacy import EntityLinker_v1 from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL @@ -716,7 +717,11 @@ TRAIN_DATA = [ ("Russ Cochran was a member of University of Kentucky's golf team.", {"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}}, "entities": [(0, 12, "PERSON"), (43, 51, "LOC")], - "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}) + "sent_starts": [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}), + # having a blank instance shouldn't break things + ("The weather is nice today.", + {"links": {}, "entities": [], + "sent_starts": [1, -1, 0, 0, 0, 0]}) ] GOLD_entities = ["Q2146908", "Q7381115", "Q7381115", "Q2146908"] # fmt: on @@ -1260,3 +1265,18 @@ def test_save_activations(): assert scores.data.shape == (2, 1) assert scores.data.dtype == "float32" assert scores.lengths.shape == (1,) + + +def test_span_maker_forward_with_empty(): + """The forward pass of the span maker may have a doc with no entities.""" + nlp = English() + doc1 = nlp("a b c") + ent = doc1[0:1] + ent.label_ = "X" + doc1.ents = [ent] + # no entities + doc2 = nlp("x y z") + + # just to get a model + span_maker = build_span_maker() + span_maker([doc1, doc2], False) diff --git a/spacy/tests/pipeline/test_tok2vec.py b/spacy/tests/pipeline/test_tok2vec.py index 659274db9..e423d9a19 100644 --- a/spacy/tests/pipeline/test_tok2vec.py +++ b/spacy/tests/pipeline/test_tok2vec.py @@ -231,7 +231,7 @@ def test_tok2vec_listener_callback(): def test_tok2vec_listener_overfitting(): - """ Test that a pipeline with a listener properly overfits, even if 'tok2vec' is in the annotating components """ + """Test that a pipeline with a listener properly overfits, even if 'tok2vec' is in the annotating components""" orig_config = Config().from_str(cfg_string) nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True) train_examples = [] @@ -264,7 +264,7 @@ def test_tok2vec_listener_overfitting(): def test_tok2vec_frozen_not_annotating(): - """ Test that a pipeline with a frozen tok2vec raises an error when the tok2vec is not annotating """ + """Test that a pipeline with a frozen tok2vec raises an error when the tok2vec is not annotating""" orig_config = Config().from_str(cfg_string) nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True) train_examples = [] @@ -274,12 +274,16 @@ def test_tok2vec_frozen_not_annotating(): for i in range(2): losses = {} - with pytest.raises(ValueError, match=r"the tok2vec embedding layer is not updated"): - nlp.update(train_examples, sgd=optimizer, losses=losses, exclude=["tok2vec"]) + with pytest.raises( + ValueError, match=r"the tok2vec embedding layer is not updated" + ): + nlp.update( + train_examples, sgd=optimizer, losses=losses, exclude=["tok2vec"] + ) def test_tok2vec_frozen_overfitting(): - """ Test that a pipeline with a frozen & annotating tok2vec can still overfit """ + """Test that a pipeline with a frozen & annotating tok2vec can still overfit""" orig_config = Config().from_str(cfg_string) nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True) train_examples = [] @@ -289,7 +293,13 @@ def test_tok2vec_frozen_overfitting(): for i in range(100): losses = {} - nlp.update(train_examples, sgd=optimizer, losses=losses, exclude=["tok2vec"], annotates=["tok2vec"]) + nlp.update( + train_examples, + sgd=optimizer, + losses=losses, + exclude=["tok2vec"], + annotates=["tok2vec"], + ) assert losses["tagger"] < 0.0001 # test the trained model diff --git a/spacy/tests/test_models.py b/spacy/tests/test_models.py index 2306cabb7..d91ed1201 100644 --- a/spacy/tests/test_models.py +++ b/spacy/tests/test_models.py @@ -23,7 +23,7 @@ def get_textcat_bow_kwargs(): def get_textcat_cnn_kwargs(): - return {"tok2vec": test_tok2vec(), "exclusive_classes": False, "nO": 13} + return {"tok2vec": make_test_tok2vec(), "exclusive_classes": False, "nO": 13} def get_all_params(model): @@ -65,7 +65,7 @@ def get_tok2vec_kwargs(): } -def test_tok2vec(): +def make_test_tok2vec(): return build_Tok2Vec_model(**get_tok2vec_kwargs()) diff --git a/website/docs/usage/rule-based-matching.md b/website/docs/usage/rule-based-matching.md index d9f551820..8e55d54d6 100644 --- a/website/docs/usage/rule-based-matching.md +++ b/website/docs/usage/rule-based-matching.md @@ -1791,7 +1791,7 @@ the entity `Span` – for example `._.orgs` or `._.prev_orgs` and > [`Doc.retokenize`](/api/doc#retokenize) context manager: > > ```python -> with doc.retokenize() as retokenize: +> with doc.retokenize() as retokenizer: > for ent in doc.ents: > retokenizer.merge(ent) > ``` diff --git a/website/meta/languages.json b/website/meta/languages.json index 0028b4a5f..bd1535c90 100644 --- a/website/meta/languages.json +++ b/website/meta/languages.json @@ -4,12 +4,22 @@ "code": "af", "name": "Afrikaans" }, + { + "code": "am", + "name": "Amharic", + "has_examples": true + }, { "code": "ar", "name": "Arabic", "example": "هذه جملة", "has_examples": true }, + { + "code": "az", + "name": "Azerbaijani", + "has_examples": true + }, { "code": "bg", "name": "Bulgarian", @@ -65,7 +75,7 @@ { "code": "dsb", "name": "Lower Sorbian", - "has_examples": true + "has_examples": true }, { "code": "el", @@ -142,6 +152,11 @@ "code": "ga", "name": "Irish" }, + { + "code": "grc", + "name": "Ancient Greek", + "has_examples": true + }, { "code": "gu", "name": "Gujarati", @@ -172,7 +187,7 @@ { "code": "hsb", "name": "Upper Sorbian", - "has_examples": true + "has_examples": true }, { "code": "hu", @@ -260,6 +275,10 @@ "example": "Адамга эң кыйыны — күн сайын адам болуу", "has_examples": true }, + { + "code": "la", + "name": "Latin" + }, { "code": "lb", "name": "Luxembourgish", @@ -448,6 +467,11 @@ "example": "นี่คือประโยค", "has_examples": true }, + { + "code": "ti", + "name": "Tigrinya", + "has_examples": true + }, { "code": "tl", "name": "Tagalog" diff --git a/website/src/styles/quickstart.module.sass b/website/src/styles/quickstart.module.sass index 8ad106a78..d0f9db551 100644 --- a/website/src/styles/quickstart.module.sass +++ b/website/src/styles/quickstart.module.sass @@ -149,6 +149,9 @@ & > span display: block + a + text-decoration: underline + .small font-size: var(--font-size-code) line-height: 1.65 diff --git a/website/src/widgets/quickstart-install.js b/website/src/widgets/quickstart-install.js index 0d2186acb..28dd14ecc 100644 --- a/website/src/widgets/quickstart-install.js +++ b/website/src/widgets/quickstart-install.js @@ -159,6 +159,9 @@ const QuickstartInstall = ({ id, title }) => { setters={setters} showDropdown={showDropdown} > + + # Note M1 GPU support is experimental, see Thinc issue #792 + python -m venv .env @@ -198,7 +201,13 @@ const QuickstartInstall = ({ id, title }) => { {nightly ? ' --pre' : ''} conda install -c conda-forge spacy - + + conda install -c conda-forge cupy + + + conda install -c conda-forge cupy + + conda install -c conda-forge cupy