Have logging calls use string formatting types (#12215)

* change logging call for spacy.LookupsDataLoader.v1

* substitutions in language and _util

* various more substitutions

* add string formatting guidelines to contribution guidelines
This commit is contained in:
Sofie Van Landeghem 2023-02-02 11:15:22 +01:00 committed by GitHub
parent 4c60afb946
commit 79ef6cf0f9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 37 additions and 28 deletions

View File

@ -173,6 +173,11 @@ formatting and [`flake8`](http://flake8.pycqa.org/en/latest/) for linting its
Python modules. If you've built spaCy from source, you'll already have both Python modules. If you've built spaCy from source, you'll already have both
tools installed. tools installed.
As a general rule of thumb, we use f-strings for any formatting of strings.
One exception are calls to Python's `logging` functionality.
To avoid unnecessary string conversions in these cases, we use string formatting
templates with `%s` and `%d` etc.
**⚠️ Note that formatting and linting is currently only possible for Python **⚠️ Note that formatting and linting is currently only possible for Python
modules in `.py` files, not Cython modules in `.pyx` and `.pxd` files.** modules in `.py` files, not Cython modules in `.pyx` and `.pxd` files.**

View File

@ -90,9 +90,9 @@ def parse_config_overrides(
cli_overrides = _parse_overrides(args, is_cli=True) cli_overrides = _parse_overrides(args, is_cli=True)
if cli_overrides: if cli_overrides:
keys = [k for k in cli_overrides if k not in env_overrides] keys = [k for k in cli_overrides if k not in env_overrides]
logger.debug(f"Config overrides from CLI: {keys}") logger.debug("Config overrides from CLI: %s", keys)
if env_overrides: if env_overrides:
logger.debug(f"Config overrides from env variables: {list(env_overrides)}") logger.debug("Config overrides from env variables: %s", list(env_overrides))
return {**cli_overrides, **env_overrides} return {**cli_overrides, **env_overrides}

View File

@ -39,14 +39,17 @@ def project_pull(project_dir: Path, remote: str, *, verbose: bool = False):
# in the list. # in the list.
while commands: while commands:
for i, cmd in enumerate(list(commands)): for i, cmd in enumerate(list(commands)):
logger.debug(f"CMD: {cmd['name']}.") logger.debug("CMD: %s.", cmd["name"])
deps = [project_dir / dep for dep in cmd.get("deps", [])] deps = [project_dir / dep for dep in cmd.get("deps", [])]
if all(dep.exists() for dep in deps): if all(dep.exists() for dep in deps):
cmd_hash = get_command_hash("", "", deps, cmd["script"]) cmd_hash = get_command_hash("", "", deps, cmd["script"])
for output_path in cmd.get("outputs", []): for output_path in cmd.get("outputs", []):
url = storage.pull(output_path, command_hash=cmd_hash) url = storage.pull(output_path, command_hash=cmd_hash)
logger.debug( logger.debug(
f"URL: {url} for {output_path} with command hash {cmd_hash}" "URL: %s for %s with command hash %s",
url,
output_path,
cmd_hash,
) )
yield url, output_path yield url, output_path
@ -58,7 +61,7 @@ def project_pull(project_dir: Path, remote: str, *, verbose: bool = False):
commands.pop(i) commands.pop(i)
break break
else: else:
logger.debug(f"Dependency missing. Skipping {cmd['name']} outputs.") logger.debug("Dependency missing. Skipping %s outputs.", cmd["name"])
else: else:
# If we didn't break the for loop, break the while loop. # If we didn't break the for loop, break the while loop.
break break

View File

@ -37,15 +37,15 @@ def project_push(project_dir: Path, remote: str):
remote = config["remotes"][remote] remote = config["remotes"][remote]
storage = RemoteStorage(project_dir, remote) storage = RemoteStorage(project_dir, remote)
for cmd in config.get("commands", []): for cmd in config.get("commands", []):
logger.debug(f"CMD: cmd['name']") logger.debug("CMD: %s", cmd["name"])
deps = [project_dir / dep for dep in cmd.get("deps", [])] deps = [project_dir / dep for dep in cmd.get("deps", [])]
if any(not dep.exists() for dep in deps): if any(not dep.exists() for dep in deps):
logger.debug(f"Dependency missing. Skipping {cmd['name']} outputs") logger.debug("Dependency missing. Skipping %s outputs", cmd["name"])
continue continue
cmd_hash = get_command_hash( cmd_hash = get_command_hash(
"", "", [project_dir / dep for dep in cmd.get("deps", [])], cmd["script"] "", "", [project_dir / dep for dep in cmd.get("deps", [])], cmd["script"]
) )
logger.debug(f"CMD_HASH: {cmd_hash}") logger.debug("CMD_HASH: %s", cmd_hash)
for output_path in cmd.get("outputs", []): for output_path in cmd.get("outputs", []):
output_loc = project_dir / output_path output_loc = project_dir / output_path
if output_loc.exists() and _is_not_empty_dir(output_loc): if output_loc.exists() and _is_not_empty_dir(output_loc):
@ -55,7 +55,7 @@ def project_push(project_dir: Path, remote: str):
content_hash=get_content_hash(output_loc), content_hash=get_content_hash(output_loc),
) )
logger.debug( logger.debug(
f"URL: {url} for output {output_path} with cmd_hash {cmd_hash}" "URL: %s for output %s with cmd_hash %s", url, output_path, cmd_hash
) )
yield output_path, url yield output_path, url

View File

@ -104,7 +104,7 @@ def create_tokenizer() -> Callable[["Language"], Tokenizer]:
@registry.misc("spacy.LookupsDataLoader.v1") @registry.misc("spacy.LookupsDataLoader.v1")
def load_lookups_data(lang, tables): def load_lookups_data(lang, tables):
util.logger.debug(f"Loading lookups from spacy-lookups-data: {tables}") util.logger.debug("Loading lookups from spacy-lookups-data: %s", tables)
lookups = load_lookups(lang=lang, tables=tables) lookups = load_lookups(lang=lang, tables=tables)
return lookups return lookups
@ -1969,7 +1969,7 @@ class Language:
pipe = self.get_pipe(pipe_name) pipe = self.get_pipe(pipe_name)
pipe_cfg = self._pipe_configs[pipe_name] pipe_cfg = self._pipe_configs[pipe_name]
if listeners: if listeners:
util.logger.debug(f"Replacing listeners of component '{pipe_name}'") util.logger.debug("Replacing listeners of component '%s'", pipe_name)
if len(list(listeners)) != len(pipe_listeners): if len(list(listeners)) != len(pipe_listeners):
# The number of listeners defined in the component model doesn't # The number of listeners defined in the component model doesn't
# match the listeners to replace, so we won't be able to update # match the listeners to replace, so we won't be able to update

View File

@ -46,7 +46,7 @@ def assert_sents_error(doc):
def warn_error(proc_name, proc, docs, e): def warn_error(proc_name, proc, docs, e):
logger = logging.getLogger("spacy") logger = logging.getLogger("spacy")
logger.warning(f"Trouble with component {proc_name}.") logger.warning("Trouble with component %s.", proc_name)
@pytest.fixture @pytest.fixture

View File

@ -11,7 +11,7 @@ def create_copy_from_base_model(
) -> Callable[[Language], Language]: ) -> Callable[[Language], Language]:
def copy_from_base_model(nlp): def copy_from_base_model(nlp):
if tokenizer: if tokenizer:
logger.info(f"Copying tokenizer from: {tokenizer}") logger.info("Copying tokenizer from: %s", tokenizer)
base_nlp = load_model(tokenizer) base_nlp = load_model(tokenizer)
if nlp.config["nlp"]["tokenizer"] == base_nlp.config["nlp"]["tokenizer"]: if nlp.config["nlp"]["tokenizer"] == base_nlp.config["nlp"]["tokenizer"]:
nlp.tokenizer.from_bytes(base_nlp.tokenizer.to_bytes(exclude=["vocab"])) nlp.tokenizer.from_bytes(base_nlp.tokenizer.to_bytes(exclude=["vocab"]))
@ -23,7 +23,7 @@ def create_copy_from_base_model(
) )
) )
if vocab: if vocab:
logger.info(f"Copying vocab from: {vocab}") logger.info("Copying vocab from: %s", vocab)
# only reload if the vocab is from a different model # only reload if the vocab is from a different model
if tokenizer != vocab: if tokenizer != vocab:
base_nlp = load_model(vocab) base_nlp = load_model(vocab)

View File

@ -29,7 +29,7 @@ def create_docbin_reader(
) -> Callable[["Language"], Iterable[Example]]: ) -> Callable[["Language"], Iterable[Example]]:
if path is None: if path is None:
raise ValueError(Errors.E913) raise ValueError(Errors.E913)
util.logger.debug(f"Loading corpus from path: {path}") util.logger.debug("Loading corpus from path: %s", path)
return Corpus( return Corpus(
path, path,
gold_preproc=gold_preproc, gold_preproc=gold_preproc,

View File

@ -62,10 +62,10 @@ def init_nlp(config: Config, *, use_gpu: int = -1) -> "Language":
frozen_components = T["frozen_components"] frozen_components = T["frozen_components"]
# Sourced components that require resume_training # Sourced components that require resume_training
resume_components = [p for p in sourced if p not in frozen_components] resume_components = [p for p in sourced if p not in frozen_components]
logger.info(f"Pipeline: {nlp.pipe_names}") logger.info("Pipeline: %s", nlp.pipe_names)
if resume_components: if resume_components:
with nlp.select_pipes(enable=resume_components): with nlp.select_pipes(enable=resume_components):
logger.info(f"Resuming training for: {resume_components}") logger.info("Resuming training for: %s", resume_components)
nlp.resume_training(sgd=optimizer) nlp.resume_training(sgd=optimizer)
# Make sure that listeners are defined before initializing further # Make sure that listeners are defined before initializing further
nlp._link_components() nlp._link_components()
@ -73,16 +73,17 @@ def init_nlp(config: Config, *, use_gpu: int = -1) -> "Language":
if T["max_epochs"] == -1: if T["max_epochs"] == -1:
sample_size = 100 sample_size = 100
logger.debug( logger.debug(
f"Due to streamed train corpus, using only first {sample_size} " "Due to streamed train corpus, using only first %s examples for initialization. "
f"examples for initialization. If necessary, provide all labels " "If necessary, provide all labels in [initialize]. "
f"in [initialize]. More info: https://spacy.io/api/cli#init_labels" "More info: https://spacy.io/api/cli#init_labels",
sample_size,
) )
nlp.initialize( nlp.initialize(
lambda: islice(train_corpus(nlp), sample_size), sgd=optimizer lambda: islice(train_corpus(nlp), sample_size), sgd=optimizer
) )
else: else:
nlp.initialize(lambda: train_corpus(nlp), sgd=optimizer) nlp.initialize(lambda: train_corpus(nlp), sgd=optimizer)
logger.info(f"Initialized pipeline components: {nlp.pipe_names}") logger.info("Initialized pipeline components: %s", nlp.pipe_names)
# Detect components with listeners that are not frozen consistently # Detect components with listeners that are not frozen consistently
for name, proc in nlp.pipeline: for name, proc in nlp.pipeline:
for listener in getattr( for listener in getattr(
@ -109,7 +110,7 @@ def init_vocab(
) -> None: ) -> None:
if lookups: if lookups:
nlp.vocab.lookups = lookups nlp.vocab.lookups = lookups
logger.info(f"Added vocab lookups: {', '.join(lookups.tables)}") logger.info("Added vocab lookups: %s", ", ".join(lookups.tables))
data_path = ensure_path(data) data_path = ensure_path(data)
if data_path is not None: if data_path is not None:
lex_attrs = srsly.read_jsonl(data_path) lex_attrs = srsly.read_jsonl(data_path)
@ -125,11 +126,11 @@ def init_vocab(
else: else:
oov_prob = DEFAULT_OOV_PROB oov_prob = DEFAULT_OOV_PROB
nlp.vocab.cfg.update({"oov_prob": oov_prob}) nlp.vocab.cfg.update({"oov_prob": oov_prob})
logger.info(f"Added {len(nlp.vocab)} lexical entries to the vocab") logger.info("Added %d lexical entries to the vocab", len(nlp.vocab))
logger.info("Created vocabulary") logger.info("Created vocabulary")
if vectors is not None: if vectors is not None:
load_vectors_into_model(nlp, vectors) load_vectors_into_model(nlp, vectors)
logger.info(f"Added vectors: {vectors}") logger.info("Added vectors: %s", vectors)
# warn if source model vectors are not identical # warn if source model vectors are not identical
sourced_vectors_hashes = nlp.meta.pop("_sourced_vectors_hashes", {}) sourced_vectors_hashes = nlp.meta.pop("_sourced_vectors_hashes", {})
vectors_hash = hash(nlp.vocab.vectors.to_bytes(exclude=["strings"])) vectors_hash = hash(nlp.vocab.vectors.to_bytes(exclude=["strings"]))
@ -191,7 +192,7 @@ def init_tok2vec(
if weights_data is not None: if weights_data is not None:
layer = get_tok2vec_ref(nlp, P) layer = get_tok2vec_ref(nlp, P)
layer.from_bytes(weights_data) layer.from_bytes(weights_data)
logger.info(f"Loaded pretrained weights from {init_tok2vec}") logger.info("Loaded pretrained weights from %s", init_tok2vec)
return True return True
return False return False
@ -216,13 +217,13 @@ def convert_vectors(
nlp.vocab.deduplicate_vectors() nlp.vocab.deduplicate_vectors()
else: else:
if vectors_loc: if vectors_loc:
logger.info(f"Reading vectors from {vectors_loc}") logger.info("Reading vectors from %s", vectors_loc)
vectors_data, vector_keys, floret_settings = read_vectors( vectors_data, vector_keys, floret_settings = read_vectors(
vectors_loc, vectors_loc,
truncate, truncate,
mode=mode, mode=mode,
) )
logger.info(f"Loaded vectors from {vectors_loc}") logger.info("Loaded vectors from %s", vectors_loc)
else: else:
vectors_data, vector_keys = (None, None) vectors_data, vector_keys = (None, None)
if vector_keys is not None and mode != VectorsMode.floret: if vector_keys is not None and mode != VectorsMode.floret:

View File

@ -370,6 +370,6 @@ def clean_output_dir(path: Optional[Path]) -> None:
if subdir.exists(): if subdir.exists():
try: try:
shutil.rmtree(str(subdir)) shutil.rmtree(str(subdir))
logger.debug(f"Removed existing output directory: {subdir}") logger.debug("Removed existing output directory: %s", subdir)
except Exception as e: except Exception as e:
raise IOError(Errors.E901.format(path=path)) from e raise IOError(Errors.E901.format(path=path)) from e