mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 09:26:27 +03:00
Merge pull request #12767 from adrianeboyd/backport/v3.5.4-1
Backports for v3.5.4
This commit is contained in:
commit
7a2833bf22
|
@ -9,7 +9,7 @@ murmurhash>=0.28.0,<1.1.0
|
|||
wasabi>=0.9.1,<1.2.0
|
||||
srsly>=2.4.3,<3.0.0
|
||||
catalogue>=2.0.6,<2.1.0
|
||||
typer>=0.3.0,<0.8.0
|
||||
typer>=0.3.0,<0.10.0
|
||||
pathy>=0.10.0
|
||||
smart-open>=5.2.1,<7.0.0
|
||||
# Third party dependencies
|
||||
|
|
|
@ -52,7 +52,7 @@ install_requires =
|
|||
srsly>=2.4.3,<3.0.0
|
||||
catalogue>=2.0.6,<2.1.0
|
||||
# Third-party dependencies
|
||||
typer>=0.3.0,<0.8.0
|
||||
typer>=0.3.0,<0.10.0
|
||||
pathy>=0.10.0
|
||||
smart-open>=5.2.1,<7.0.0
|
||||
tqdm>=4.38.0,<5.0.0
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# fmt: off
|
||||
__title__ = "spacy"
|
||||
__version__ = "3.5.3"
|
||||
__version__ = "3.5.4"
|
||||
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
|
||||
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
|
||||
__projects__ = "https://github.com/explosion/projects"
|
||||
|
|
|
@ -716,6 +716,11 @@ class Language:
|
|||
)
|
||||
)
|
||||
pipe = source.get_pipe(source_name)
|
||||
# There is no actual solution here. Either the component has the right
|
||||
# name for the source pipeline or the component has the right name for
|
||||
# the current pipeline. This prioritizes the current pipeline.
|
||||
if hasattr(pipe, "name"):
|
||||
pipe.name = name
|
||||
# Make sure the source config is interpolated so we don't end up with
|
||||
# orphaned variables in our final config
|
||||
source_config = source.config.interpolate()
|
||||
|
@ -793,6 +798,7 @@ class Language:
|
|||
pipe_index = self._get_pipe_index(before, after, first, last)
|
||||
self._pipe_meta[name] = self.get_factory_meta(factory_name)
|
||||
self._components.insert(pipe_index, (name, pipe_component))
|
||||
self._link_components()
|
||||
return pipe_component
|
||||
|
||||
def _get_pipe_index(
|
||||
|
@ -928,6 +934,7 @@ class Language:
|
|||
if old_name in self._config["initialize"]["components"]:
|
||||
init_cfg = self._config["initialize"]["components"].pop(old_name)
|
||||
self._config["initialize"]["components"][new_name] = init_cfg
|
||||
self._link_components()
|
||||
|
||||
def remove_pipe(self, name: str) -> Tuple[str, PipeCallable]:
|
||||
"""Remove a component from the pipeline.
|
||||
|
@ -951,6 +958,7 @@ class Language:
|
|||
# Make sure the name is also removed from the set of disabled components
|
||||
if name in self.disabled:
|
||||
self._disabled.remove(name)
|
||||
self._link_components()
|
||||
return removed
|
||||
|
||||
def disable_pipe(self, name: str) -> None:
|
||||
|
@ -1673,8 +1681,16 @@ class Language:
|
|||
# The problem is we need to do it during deserialization...And the
|
||||
# components don't receive the pipeline then. So this does have to be
|
||||
# here :(
|
||||
# First, fix up all the internal component names in case they have
|
||||
# gotten out of sync due to sourcing components from different
|
||||
# pipelines, since find_listeners uses proc2.name for the listener
|
||||
# map.
|
||||
for name, proc in self.pipeline:
|
||||
if hasattr(proc, "name"):
|
||||
proc.name = name
|
||||
for i, (name1, proc1) in enumerate(self.pipeline):
|
||||
if isinstance(proc1, ty.ListenedToComponent):
|
||||
proc1.listener_map = {}
|
||||
for name2, proc2 in self.pipeline[i + 1 :]:
|
||||
proc1.find_listeners(proc2)
|
||||
|
||||
|
@ -1808,6 +1824,7 @@ class Language:
|
|||
raw_config=raw_config,
|
||||
)
|
||||
else:
|
||||
assert "source" in pipe_cfg
|
||||
# We need the sourced components to reference the same
|
||||
# vocab without modifying the current vocab state **AND**
|
||||
# we still want to load the source model vectors to perform
|
||||
|
@ -1827,6 +1844,10 @@ class Language:
|
|||
source_name = pipe_cfg.get("component", pipe_name)
|
||||
listeners_replaced = False
|
||||
if "replace_listeners" in pipe_cfg:
|
||||
# Make sure that the listened-to component has the
|
||||
# state of the source pipeline listener map so that the
|
||||
# replace_listeners method below works as intended.
|
||||
source_nlps[model]._link_components()
|
||||
for name, proc in source_nlps[model].pipeline:
|
||||
if source_name in getattr(proc, "listening_components", []):
|
||||
source_nlps[model].replace_listeners(
|
||||
|
@ -1838,6 +1859,8 @@ class Language:
|
|||
nlp.add_pipe(
|
||||
source_name, source=source_nlps[model], name=pipe_name
|
||||
)
|
||||
# At this point after nlp.add_pipe, the listener map
|
||||
# corresponds to the new pipeline.
|
||||
if model not in source_nlp_vectors_hashes:
|
||||
source_nlp_vectors_hashes[model] = hash(
|
||||
source_nlps[model].vocab.vectors.to_bytes(
|
||||
|
@ -1892,27 +1915,6 @@ class Language:
|
|||
raise ValueError(
|
||||
Errors.E942.format(name="pipeline_creation", value=type(nlp))
|
||||
)
|
||||
# Detect components with listeners that are not frozen consistently
|
||||
for name, proc in nlp.pipeline:
|
||||
if isinstance(proc, ty.ListenedToComponent):
|
||||
# Remove listeners not in the pipeline
|
||||
listener_names = proc.listening_components
|
||||
unused_listener_names = [
|
||||
ll for ll in listener_names if ll not in nlp.pipe_names
|
||||
]
|
||||
for listener_name in unused_listener_names:
|
||||
for listener in proc.listener_map.get(listener_name, []):
|
||||
proc.remove_listener(listener, listener_name)
|
||||
|
||||
for listener_name in proc.listening_components:
|
||||
# e.g. tok2vec/transformer
|
||||
# If it's a component sourced from another pipeline, we check if
|
||||
# the tok2vec listeners should be replaced with standalone tok2vec
|
||||
# models (e.g. so component can be frozen without its performance
|
||||
# degrading when other components/tok2vec are updated)
|
||||
paths = sourced.get(listener_name, {}).get("replace_listeners", [])
|
||||
if paths:
|
||||
nlp.replace_listeners(name, listener_name, paths)
|
||||
return nlp
|
||||
|
||||
def replace_listeners(
|
||||
|
|
|
@ -188,8 +188,7 @@ def test_tok2vec_listener(with_vectors):
|
|||
for tag in t[1]["tags"]:
|
||||
tagger.add_label(tag)
|
||||
|
||||
# Check that the Tok2Vec component finds it listeners
|
||||
assert tok2vec.listeners == []
|
||||
# Check that the Tok2Vec component finds its listeners
|
||||
optimizer = nlp.initialize(lambda: train_examples)
|
||||
assert tok2vec.listeners == [tagger_tok2vec]
|
||||
|
||||
|
@ -217,7 +216,6 @@ def test_tok2vec_listener_callback():
|
|||
assert nlp.pipe_names == ["tok2vec", "tagger"]
|
||||
tagger = nlp.get_pipe("tagger")
|
||||
tok2vec = nlp.get_pipe("tok2vec")
|
||||
nlp._link_components()
|
||||
docs = [nlp.make_doc("A random sentence")]
|
||||
tok2vec.model.initialize(X=docs)
|
||||
gold_array = [[1.0 for tag in ["V", "Z"]] for word in docs]
|
||||
|
@ -426,29 +424,46 @@ def test_replace_listeners_from_config():
|
|||
nlp.to_disk(dir_path)
|
||||
base_model = str(dir_path)
|
||||
new_config = {
|
||||
"nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger", "ner"]},
|
||||
"nlp": {
|
||||
"lang": "en",
|
||||
"pipeline": ["tok2vec", "tagger2", "ner3", "tagger4"],
|
||||
},
|
||||
"components": {
|
||||
"tok2vec": {"source": base_model},
|
||||
"tagger": {
|
||||
"tagger2": {
|
||||
"source": base_model,
|
||||
"component": "tagger",
|
||||
"replace_listeners": ["model.tok2vec"],
|
||||
},
|
||||
"ner": {"source": base_model},
|
||||
"ner3": {
|
||||
"source": base_model,
|
||||
"component": "ner",
|
||||
},
|
||||
"tagger4": {
|
||||
"source": base_model,
|
||||
"component": "tagger",
|
||||
},
|
||||
},
|
||||
}
|
||||
new_nlp = util.load_model_from_config(new_config, auto_fill=True)
|
||||
new_nlp.initialize(lambda: examples)
|
||||
tok2vec = new_nlp.get_pipe("tok2vec")
|
||||
tagger = new_nlp.get_pipe("tagger")
|
||||
ner = new_nlp.get_pipe("ner")
|
||||
assert tok2vec.listening_components == ["ner"]
|
||||
tagger = new_nlp.get_pipe("tagger2")
|
||||
ner = new_nlp.get_pipe("ner3")
|
||||
assert "ner" not in new_nlp.pipe_names
|
||||
assert "tagger" not in new_nlp.pipe_names
|
||||
assert tok2vec.listening_components == ["ner3", "tagger4"]
|
||||
assert any(isinstance(node, Tok2VecListener) for node in ner.model.walk())
|
||||
assert not any(isinstance(node, Tok2VecListener) for node in tagger.model.walk())
|
||||
t2v_cfg = new_nlp.config["components"]["tok2vec"]["model"]
|
||||
assert t2v_cfg["@architectures"] == "spacy.Tok2Vec.v2"
|
||||
assert new_nlp.config["components"]["tagger"]["model"]["tok2vec"] == t2v_cfg
|
||||
assert new_nlp.config["components"]["tagger2"]["model"]["tok2vec"] == t2v_cfg
|
||||
assert (
|
||||
new_nlp.config["components"]["ner"]["model"]["tok2vec"]["@architectures"]
|
||||
new_nlp.config["components"]["ner3"]["model"]["tok2vec"]["@architectures"]
|
||||
== "spacy.Tok2VecListener.v1"
|
||||
)
|
||||
assert (
|
||||
new_nlp.config["components"]["tagger4"]["model"]["tok2vec"]["@architectures"]
|
||||
== "spacy.Tok2VecListener.v1"
|
||||
)
|
||||
|
||||
|
@ -540,3 +555,57 @@ def test_tok2vec_listeners_textcat():
|
|||
assert cats1["imperative"] < 0.9
|
||||
assert [t.tag_ for t in docs[0]] == ["V", "J", "N"]
|
||||
assert [t.tag_ for t in docs[1]] == ["N", "V", "J", "N"]
|
||||
|
||||
|
||||
def test_tok2vec_listener_source_link_name():
|
||||
"""The component's internal name and the tok2vec listener map correspond
|
||||
to the most recently modified pipeline.
|
||||
"""
|
||||
orig_config = Config().from_str(cfg_string_multi)
|
||||
nlp1 = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
|
||||
assert nlp1.get_pipe("tok2vec").listening_components == ["tagger", "ner"]
|
||||
|
||||
nlp2 = English()
|
||||
nlp2.add_pipe("tok2vec", source=nlp1)
|
||||
nlp2.add_pipe("tagger", name="tagger2", source=nlp1)
|
||||
|
||||
# there is no way to have the component have the right name for both
|
||||
# pipelines, right now the most recently modified pipeline is prioritized
|
||||
assert nlp1.get_pipe("tagger").name == nlp2.get_pipe("tagger2").name == "tagger2"
|
||||
|
||||
# there is no way to have the tok2vec have the right listener map for both
|
||||
# pipelines, right now the most recently modified pipeline is prioritized
|
||||
assert nlp2.get_pipe("tok2vec").listening_components == ["tagger2"]
|
||||
nlp2.add_pipe("ner", name="ner3", source=nlp1)
|
||||
assert nlp2.get_pipe("tok2vec").listening_components == ["tagger2", "ner3"]
|
||||
nlp2.remove_pipe("ner3")
|
||||
assert nlp2.get_pipe("tok2vec").listening_components == ["tagger2"]
|
||||
nlp2.remove_pipe("tagger2")
|
||||
assert nlp2.get_pipe("tok2vec").listening_components == []
|
||||
|
||||
# at this point the tok2vec component corresponds to nlp2
|
||||
assert nlp1.get_pipe("tok2vec").listening_components == []
|
||||
|
||||
# modifying the nlp1 pipeline syncs the tok2vec listener map back to nlp1
|
||||
nlp1.add_pipe("sentencizer")
|
||||
assert nlp1.get_pipe("tok2vec").listening_components == ["tagger", "ner"]
|
||||
|
||||
# modifying nlp2 syncs it back to nlp2
|
||||
nlp2.add_pipe("sentencizer")
|
||||
assert nlp1.get_pipe("tok2vec").listening_components == []
|
||||
|
||||
|
||||
def test_tok2vec_listener_source_replace_listeners():
|
||||
orig_config = Config().from_str(cfg_string_multi)
|
||||
nlp1 = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
|
||||
assert nlp1.get_pipe("tok2vec").listening_components == ["tagger", "ner"]
|
||||
nlp1.replace_listeners("tok2vec", "tagger", ["model.tok2vec"])
|
||||
assert nlp1.get_pipe("tok2vec").listening_components == ["ner"]
|
||||
|
||||
nlp2 = English()
|
||||
nlp2.add_pipe("tok2vec", source=nlp1)
|
||||
assert nlp2.get_pipe("tok2vec").listening_components == []
|
||||
nlp2.add_pipe("tagger", source=nlp1)
|
||||
assert nlp2.get_pipe("tok2vec").listening_components == []
|
||||
nlp2.add_pipe("ner", name="ner2", source=nlp1)
|
||||
assert nlp2.get_pipe("tok2vec").listening_components == ["ner2"]
|
||||
|
|
|
@ -72,7 +72,7 @@ def entity_linker():
|
|||
|
||||
def create_kb(vocab):
|
||||
kb = InMemoryLookupKB(vocab, entity_vector_length=1)
|
||||
kb.add_entity("test", 0.0, zeros((1, 1), dtype="f"))
|
||||
kb.add_entity("test", 0.0, zeros((1,), dtype="f"))
|
||||
return kb
|
||||
|
||||
entity_linker = nlp.add_pipe("entity_linker")
|
||||
|
|
|
@ -10,6 +10,7 @@ from spacy.language import Language
|
|||
from spacy.ml.models import MaxoutWindowEncoder, MultiHashEmbed
|
||||
from spacy.ml.models import build_tb_parser_model, build_Tok2Vec_model
|
||||
from spacy.schemas import ConfigSchema, ConfigSchemaPretrain
|
||||
from spacy.training import Example
|
||||
from spacy.util import load_config, load_config_from_str
|
||||
from spacy.util import load_model_from_config, registry
|
||||
|
||||
|
@ -415,6 +416,55 @@ def test_config_overrides():
|
|||
assert nlp.pipe_names == ["tok2vec", "tagger"]
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore:\\[W036")
|
||||
def test_config_overrides_registered_functions():
|
||||
nlp = spacy.blank("en")
|
||||
nlp.add_pipe("attribute_ruler")
|
||||
with make_tempdir() as d:
|
||||
nlp.to_disk(d)
|
||||
nlp_re1 = spacy.load(
|
||||
d,
|
||||
config={
|
||||
"components": {
|
||||
"attribute_ruler": {
|
||||
"scorer": {"@scorers": "spacy.tagger_scorer.v1"}
|
||||
}
|
||||
}
|
||||
},
|
||||
)
|
||||
assert (
|
||||
nlp_re1.config["components"]["attribute_ruler"]["scorer"]["@scorers"]
|
||||
== "spacy.tagger_scorer.v1"
|
||||
)
|
||||
|
||||
@registry.misc("test_some_other_key")
|
||||
def misc_some_other_key():
|
||||
return "some_other_key"
|
||||
|
||||
nlp_re2 = spacy.load(
|
||||
d,
|
||||
config={
|
||||
"components": {
|
||||
"attribute_ruler": {
|
||||
"scorer": {
|
||||
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
|
||||
"spans_key": {"@misc": "test_some_other_key"},
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
)
|
||||
assert nlp_re2.config["components"]["attribute_ruler"]["scorer"][
|
||||
"spans_key"
|
||||
] == {"@misc": "test_some_other_key"}
|
||||
# run dummy evaluation (will return None scores) in order to test that
|
||||
# the spans_key value in the nested override is working as intended in
|
||||
# the config
|
||||
example = Example.from_dict(nlp_re2.make_doc("a b c"), {})
|
||||
scores = nlp_re2.evaluate([example])
|
||||
assert "spans_some_other_key_f" in scores
|
||||
|
||||
|
||||
def test_config_interpolation():
|
||||
config = Config().from_str(nlp_config_string, interpolate=False)
|
||||
assert config["corpora"]["train"]["path"] == "${paths.train}"
|
||||
|
|
|
@ -237,6 +237,10 @@ def test_minor_version(a1, a2, b1, b2, is_match):
|
|||
{"training.batch_size": 128, "training.optimizer.learn_rate": 0.01},
|
||||
{"training": {"batch_size": 128, "optimizer": {"learn_rate": 0.01}}},
|
||||
),
|
||||
(
|
||||
{"attribute_ruler.scorer.@scorers": "spacy.tagger_scorer.v1"},
|
||||
{"attribute_ruler": {"scorer": {"@scorers": "spacy.tagger_scorer.v1"}}},
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_dot_to_dict(dot_notation, expected):
|
||||
|
@ -245,6 +249,29 @@ def test_dot_to_dict(dot_notation, expected):
|
|||
assert util.dict_to_dot(result) == dot_notation
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dot_notation,expected",
|
||||
[
|
||||
(
|
||||
{"token.pos": True, "token._.xyz": True},
|
||||
{"token": {"pos": True, "_": {"xyz": True}}},
|
||||
),
|
||||
(
|
||||
{"training.batch_size": 128, "training.optimizer.learn_rate": 0.01},
|
||||
{"training": {"batch_size": 128, "optimizer": {"learn_rate": 0.01}}},
|
||||
),
|
||||
(
|
||||
{"attribute_ruler.scorer": {"@scorers": "spacy.tagger_scorer.v1"}},
|
||||
{"attribute_ruler": {"scorer": {"@scorers": "spacy.tagger_scorer.v1"}}},
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_dot_to_dict_overrides(dot_notation, expected):
|
||||
result = util.dot_to_dict(dot_notation)
|
||||
assert result == expected
|
||||
assert util.dict_to_dot(result, for_overrides=True) == dot_notation
|
||||
|
||||
|
||||
def test_set_dot_to_object():
|
||||
config = {"foo": {"bar": 1, "baz": {"x": "y"}}, "test": {"a": {"b": "c"}}}
|
||||
with pytest.raises(KeyError):
|
||||
|
|
|
@ -67,7 +67,8 @@ def init_nlp(config: Config, *, use_gpu: int = -1) -> "Language":
|
|||
with nlp.select_pipes(enable=resume_components):
|
||||
logger.info("Resuming training for: %s", resume_components)
|
||||
nlp.resume_training(sgd=optimizer)
|
||||
# Make sure that listeners are defined before initializing further
|
||||
# Make sure that internal component names are synced and listeners are
|
||||
# defined before initializing further
|
||||
nlp._link_components()
|
||||
with nlp.select_pipes(disable=[*frozen_components, *resume_components]):
|
||||
if T["max_epochs"] == -1:
|
||||
|
|
|
@ -511,7 +511,7 @@ def load_model_from_path(
|
|||
if not meta:
|
||||
meta = get_model_meta(model_path)
|
||||
config_path = model_path / "config.cfg"
|
||||
overrides = dict_to_dot(config)
|
||||
overrides = dict_to_dot(config, for_overrides=True)
|
||||
config = load_config(config_path, overrides=overrides)
|
||||
nlp = load_model_from_config(
|
||||
config,
|
||||
|
@ -1479,14 +1479,19 @@ def dot_to_dict(values: Dict[str, Any]) -> Dict[str, dict]:
|
|||
return result
|
||||
|
||||
|
||||
def dict_to_dot(obj: Dict[str, dict]) -> Dict[str, Any]:
|
||||
def dict_to_dot(obj: Dict[str, dict], *, for_overrides: bool = False) -> Dict[str, Any]:
|
||||
"""Convert dot notation to a dict. For example: {"token": {"pos": True,
|
||||
"_": {"xyz": True }}} becomes {"token.pos": True, "token._.xyz": True}.
|
||||
|
||||
values (Dict[str, dict]): The dict to convert.
|
||||
obj (Dict[str, dict]): The dict to convert.
|
||||
for_overrides (bool): Whether to enable special handling for registered
|
||||
functions in overrides.
|
||||
RETURNS (Dict[str, Any]): The key/value pairs.
|
||||
"""
|
||||
return {".".join(key): value for key, value in walk_dict(obj)}
|
||||
return {
|
||||
".".join(key): value
|
||||
for key, value in walk_dict(obj, for_overrides=for_overrides)
|
||||
}
|
||||
|
||||
|
||||
def dot_to_object(config: Config, section: str):
|
||||
|
@ -1528,13 +1533,20 @@ def set_dot_to_object(config: Config, section: str, value: Any) -> None:
|
|||
|
||||
|
||||
def walk_dict(
|
||||
node: Dict[str, Any], parent: List[str] = []
|
||||
node: Dict[str, Any], parent: List[str] = [], *, for_overrides: bool = False
|
||||
) -> Iterator[Tuple[List[str], Any]]:
|
||||
"""Walk a dict and yield the path and values of the leaves."""
|
||||
"""Walk a dict and yield the path and values of the leaves.
|
||||
|
||||
for_overrides (bool): Whether to treat registered functions that start with
|
||||
@ as final values rather than dicts to traverse.
|
||||
"""
|
||||
for key, value in node.items():
|
||||
key_parent = [*parent, key]
|
||||
if isinstance(value, dict):
|
||||
yield from walk_dict(value, key_parent)
|
||||
if isinstance(value, dict) and (
|
||||
not for_overrides
|
||||
or not any(value_key.startswith("@") for value_key in value)
|
||||
):
|
||||
yield from walk_dict(value, key_parent, for_overrides=for_overrides)
|
||||
else:
|
||||
yield (key_parent, value)
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user