mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 10:46:29 +03:00
Update pipeline component usage docs
This commit is contained in:
parent
3d5154811a
commit
7a592d01dc
|
@ -105,9 +105,9 @@
|
||||||
"menu": {
|
"menu": {
|
||||||
"How Pipelines Work": "pipelines",
|
"How Pipelines Work": "pipelines",
|
||||||
"Custom Components": "custom-components",
|
"Custom Components": "custom-components",
|
||||||
|
"Developing Extensions": "extensions",
|
||||||
"Multi-threading": "multithreading",
|
"Multi-threading": "multithreading",
|
||||||
"Serialization": "serialization",
|
"Serialization": "serialization"
|
||||||
"Developing Extensions": "extensions"
|
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
|
||||||
|
|
|
@ -1,12 +1,11 @@
|
||||||
//- 💫 DOCS > USAGE > PROCESSING PIPELINES > CUSTOM COMPONENTS
|
//- 💫 DOCS > USAGE > PROCESSING PIPELINES > CUSTOM COMPONENTS
|
||||||
|
|
||||||
p
|
p
|
||||||
| A component receives a #[code Doc] object and
|
| A component receives a #[code Doc] object and can modify it – for example,
|
||||||
| #[strong performs the actual processing] – for example, using the current
|
| by using the current weights to make a prediction and set some annotation
|
||||||
| weights to make a prediction and set some annotation on the document. By
|
| on the document. By adding a component to the pipeline, you'll get access
|
||||||
| adding a component to the pipeline, you'll get access to the #[code Doc]
|
| to the #[code Doc] at any point #[strong during processing] – instead of
|
||||||
| at any point #[strong during] processing – instead of only being able to
|
| only being able to modify it afterwards.
|
||||||
| modify it afterwards.
|
|
||||||
|
|
||||||
+aside-code("Example").
|
+aside-code("Example").
|
||||||
def my_component(doc):
|
def my_component(doc):
|
||||||
|
@ -27,10 +26,10 @@ p
|
||||||
p
|
p
|
||||||
| Custom components can be added to the pipeline using the
|
| Custom components can be added to the pipeline using the
|
||||||
| #[+api("language#add_pipe") #[code add_pipe]] method. Optionally, you
|
| #[+api("language#add_pipe") #[code add_pipe]] method. Optionally, you
|
||||||
| can either specify a component to add it before or after, tell spaCy
|
| can either specify a component to add it #[strong before or after], tell
|
||||||
| to add it first or last in the pipeline, or define a custom name.
|
| spaCy to add it #[strong first or last] in the pipeline, or define a
|
||||||
| If no name is set and no #[code name] attribute is present on your
|
| #[strong custom name]. If no name is set and no #[code name] attribute
|
||||||
| component, the function name, e.g. #[code component.__name__] is used.
|
| is present on your component, the function name is used.
|
||||||
|
|
||||||
+code("Adding pipeline components").
|
+code("Adding pipeline components").
|
||||||
def my_component(doc):
|
def my_component(doc):
|
||||||
|
@ -67,7 +66,19 @@ p
|
||||||
nlp.add_pipe(my_component, first=True)
|
nlp.add_pipe(my_component, first=True)
|
||||||
|
|
||||||
+h(3, "custom-components-attributes")
|
+h(3, "custom-components-attributes")
|
||||||
| Setting attributes on the #[code Doc], #[code Span] and #[code Token]
|
| Extension attributes on #[code Doc], #[code Span] and #[code Token]
|
||||||
|
+tag-new(2)
|
||||||
|
|
||||||
|
p
|
||||||
|
| As of v2.0, spaCy allows you to set any custom attributes and methods
|
||||||
|
| on the #[code Doc], #[code Span] and #[code Token], which become
|
||||||
|
| available as #[code Doc._], #[code Span._] and #[code Token._] – for
|
||||||
|
| example, #[code Token._.my_attr]. This lets you store additional
|
||||||
|
| information relevant to your application, add new features and
|
||||||
|
| functionality to spaCy, and implement your own models trained with other
|
||||||
|
| machine learning libraries. It also lets you take advantage of spaCy's
|
||||||
|
| data structures and the #[code Doc] object as the "single source of
|
||||||
|
| truth".
|
||||||
|
|
||||||
+aside("Why ._?")
|
+aside("Why ._?")
|
||||||
| Writing to a #[code ._] attribute instead of to the #[code Doc] directly
|
| Writing to a #[code ._] attribute instead of to the #[code Doc] directly
|
||||||
|
@ -78,9 +89,218 @@ p
|
||||||
| what's custom – for example, #[code doc.sentiment] is spaCy, while
|
| what's custom – for example, #[code doc.sentiment] is spaCy, while
|
||||||
| #[code doc._.sent_score] isn't.
|
| #[code doc._.sent_score] isn't.
|
||||||
|
|
||||||
+under-construction
|
p
|
||||||
|
| There are three main types of extensions, which can be defined using the
|
||||||
|
| #[+api("doc#set_extension") #[code Doc.set_extension]],
|
||||||
|
| #[+api("span#set_extension") #[code Span.set_extension]] and
|
||||||
|
| #[+api("token#set_extension") #[code Token.set_extension]] methods.
|
||||||
|
|
||||||
+h(3, "custom-components-user-hooks") Other user hooks
|
+list("numbers")
|
||||||
|
+item #[strong Attribute extensions].
|
||||||
|
| Set a default value for an attribute, which can be overwritten
|
||||||
|
| manually at any time. Attribute extensions work like "normal"
|
||||||
|
| variables and are the quickest way to store arbitrary information
|
||||||
|
| on a #[code Doc], #[code Span] or #[code Token].
|
||||||
|
|
||||||
|
+code-wrapper
|
||||||
|
+code.
|
||||||
|
Doc.set_extension('hello', default=True)
|
||||||
|
assert doc._.hello
|
||||||
|
doc._.hello = False
|
||||||
|
|
||||||
|
+item #[strong Property extensions].
|
||||||
|
| Define a getter and an optional setter function. If no setter is
|
||||||
|
| provided, the extension is immutable. Since the getter and setter
|
||||||
|
| functions are only called when you #[em retrieve] the attribute,
|
||||||
|
| you can also access values of previously added attribute extensions.
|
||||||
|
| For example, a #[code Doc] getter can average over #[code Token]
|
||||||
|
| attributes. For #[code Span] extensions, you'll almost always want
|
||||||
|
| to use a property – otherwise, you'd have to write to
|
||||||
|
| #[em every possible] #[code Span] in the #[code Doc] to set up the
|
||||||
|
| values correctly.
|
||||||
|
|
||||||
|
+code-wrapper
|
||||||
|
+code.
|
||||||
|
Doc.set_extension('hello', getter=get_hello_value, setter=set_hello_value)
|
||||||
|
assert doc._.hello
|
||||||
|
doc._.hello = 'Hi!'
|
||||||
|
|
||||||
|
+item #[strong Method extensions].
|
||||||
|
| Assign a function that becomes available as an object method. Method
|
||||||
|
| extensions are always immutable. For more details and implementation
|
||||||
|
| ideas, see
|
||||||
|
| #[+a("/usage/examples#custom-components-attr-methods") these examples].
|
||||||
|
|
||||||
|
+code-wrapper
|
||||||
|
+code.o-no-block.
|
||||||
|
Doc.set_extension('hello', method=lambda doc, name: 'Hi {}!'.format(name))
|
||||||
|
assert doc._.hello('Bob') == 'Hi Bob!'
|
||||||
|
|
||||||
|
p
|
||||||
|
| Before you can access a custom extension, you need to register it using
|
||||||
|
| the #[code set_extension] method on the object you want
|
||||||
|
| to add it to, e.g. the #[code Doc]. Keep in mind that extensions are
|
||||||
|
| always #[strong added globally] and not just on a particular instance.
|
||||||
|
| If an attribute of the same name
|
||||||
|
| already exists, or if you're trying to access an attribute that hasn't
|
||||||
|
| been registered, spaCy will raise an #[code AttributeError].
|
||||||
|
|
||||||
|
+code("Example").
|
||||||
|
from spacy.tokens.token import Token
|
||||||
|
from spacy.tokens.doc import Doc
|
||||||
|
from spacy.tokens.span import Span
|
||||||
|
|
||||||
|
fruits = ['apple', 'pear', 'banana', 'orange', 'strawberry']
|
||||||
|
is_fruit_getter = lambda token: token.text in fruits
|
||||||
|
has_fruit_getter = lambda obj: any([t.text in fruits for t in obj])
|
||||||
|
|
||||||
|
Token.set_extension('is_fruit', getter=is_fruit_getter)
|
||||||
|
Doc.set_extension('has_fruit', getter=has_fruit_getter)
|
||||||
|
Span.set_extension('has_fruit', getter=has_fruit_getter)
|
||||||
|
|
||||||
|
+aside-code("Usage example").
|
||||||
|
doc = nlp(u"I have an apple and a melon")
|
||||||
|
assert doc[3]._.is_fruit # get Token attributes
|
||||||
|
assert not doc[0]._.is_fruit
|
||||||
|
assert doc._.has_fruit # get Doc attributes
|
||||||
|
assert doc[1:4]._.has_fruit # get Span attributes
|
||||||
|
|
||||||
|
p
|
||||||
|
| Once you've registered your custom attribute, you can also use the
|
||||||
|
| built-in #[code set], #[code get] and #[code has] methods to modify and
|
||||||
|
| retrieve the attributes. This is especially useful it you want to pass in
|
||||||
|
| a string instead of calling #[code doc._.my_attr].
|
||||||
|
|
||||||
|
+table(["Method", "Description", "Valid for", "Example"])
|
||||||
|
+row
|
||||||
|
+cell #[code ._.set()]
|
||||||
|
+cell Set a value for an attribute.
|
||||||
|
+cell Attributes, mutable properties.
|
||||||
|
+cell #[code.u-break token._.set('my_attr', True)]
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell #[code ._.get()]
|
||||||
|
+cell Get the value of an attribute.
|
||||||
|
+cell Attributes, mutable properties, immutable properties, methods.
|
||||||
|
+cell #[code.u-break my_attr = span._.get('my_attr')]
|
||||||
|
|
||||||
|
+row
|
||||||
|
+cell #[code ._.has()]
|
||||||
|
+cell Check if an attribute exists.
|
||||||
|
+cell Attributes, mutable properties, immutable properties, methods.
|
||||||
|
+cell #[code.u-break doc._.has('my_attr')]
|
||||||
|
|
||||||
|
+infobox("How the ._ is implemented")
|
||||||
|
| Extension definitions – the defaults, methods, getters and setters you
|
||||||
|
| pass in to #[code set_extension] are stored in class attributes on the
|
||||||
|
| #[code Underscore] class. If you write to an extension attribute, e.g.
|
||||||
|
| #[code doc._.hello = True], the data is stored within the
|
||||||
|
| #[+api("doc#attributes") #[code Doc.user_data]] dictionary. To keep the
|
||||||
|
| underscore data separate from your other dictionary entries, the string
|
||||||
|
| #[code "._."] is placed before the name, in a tuple.
|
||||||
|
|
||||||
|
+h(4, "component-example1") Example: Custom sentence segmentation logic
|
||||||
|
|
||||||
|
p
|
||||||
|
| Let's say you want to implement custom logic to improve spaCy's sentence
|
||||||
|
| boundary detection. Currently, sentence segmentation is based on the
|
||||||
|
| dependency parse, which doesn't always produce ideal results. The custom
|
||||||
|
| logic should therefore be applied #[strong after] tokenization, but
|
||||||
|
| #[strong before] the dependency parsing – this way, the parser can also
|
||||||
|
| take advantage of the sentence boundaries.
|
||||||
|
|
||||||
|
+code.
|
||||||
|
def sbd_component(doc):
|
||||||
|
for i, token in enumerate(doc[:-2]):
|
||||||
|
# define sentence start if period + titlecase token
|
||||||
|
if token.text == '.' and doc[i+1].is_title:
|
||||||
|
doc[i+1].sent_start = True
|
||||||
|
return doc
|
||||||
|
|
||||||
|
nlp = spacy.load('en')
|
||||||
|
nlp.add_pipe(sbd_component, before='parser') # insert before the parser
|
||||||
|
|
||||||
|
+h(4, "component-example2")
|
||||||
|
| Example: Pipeline component for entity matching and tagging with
|
||||||
|
| custom attributes
|
||||||
|
|
||||||
|
p
|
||||||
|
| This example shows how to create a spaCy extension that takes a
|
||||||
|
| terminology list (in this case, single- and multi-word company names),
|
||||||
|
| matches the occurences in a document, labels them as #[code ORG] entities,
|
||||||
|
| merges the tokens and sets custom #[code is_tech_org] and
|
||||||
|
| #[code has_tech_org] attributes. For efficient matching, the example uses
|
||||||
|
| the #[+api("phrasematcher") #[code PhraseMatcher]] which accepts
|
||||||
|
| #[code Doc] objects as match patterns and works well for large
|
||||||
|
| terminology lists. It also ensures your patterns will always match, even
|
||||||
|
| when you customise spaCy's tokenization rules. When you call #[code nlp]
|
||||||
|
| on a text, the custom pipeline component is applied to the #[code Doc]
|
||||||
|
|
||||||
|
+github("spacy", "examples/pipeline/custom_component_entities.py", false, 500)
|
||||||
|
|
||||||
|
p
|
||||||
|
| Wrapping this functionality in a
|
||||||
|
| pipeline component allows you to reuse the module with different
|
||||||
|
| settings, and have all pre-processing taken care of when you call
|
||||||
|
| #[code nlp] on your text and receive a #[code Doc] object.
|
||||||
|
|
||||||
|
+h(4, "component-example3")
|
||||||
|
| Example: Pipeline component for GPE entities and country meta data via a
|
||||||
|
| REST API
|
||||||
|
|
||||||
|
p
|
||||||
|
| This example shows the implementation of a pipeline component
|
||||||
|
| that fetches country meta data via the
|
||||||
|
| #[+a("https://restcountries.eu") REST Countries API] sets entity
|
||||||
|
| annotations for countries, merges entities into one token and
|
||||||
|
| sets custom attributes on the #[code Doc], #[code Span] and
|
||||||
|
| #[code Token] – for example, the capital, latitude/longitude coordinates
|
||||||
|
| and even the country flag.
|
||||||
|
|
||||||
|
+github("spacy", "examples/pipeline/custom_component_countries_api.py", false, 500)
|
||||||
|
|
||||||
|
p
|
||||||
|
| In this case, all data can be fetched on initialisation in one request.
|
||||||
|
| However, if you're working with text that contains incomplete country
|
||||||
|
| names, spelling mistakes or foreign-language versions, you could also
|
||||||
|
| implement a #[code like_country]-style getter function that makes a
|
||||||
|
| request to the search API endpoint and returns the best-matching
|
||||||
|
| result.
|
||||||
|
|
||||||
|
+h(4, "custom-components-usage-ideas") Other usage ideas
|
||||||
|
|
||||||
|
+list
|
||||||
|
+item
|
||||||
|
| #[strong Adding new features and hooking in models]. For example,
|
||||||
|
| a sentiment analysis model, or your preferred solution for
|
||||||
|
| lemmatization or sentiment analysis. spaCy's built-in tagger,
|
||||||
|
| parser and entity recognizer respect annotations that were already
|
||||||
|
| set on the #[code Doc] in a previous step of the pipeline.
|
||||||
|
+item
|
||||||
|
| #[strong Integrating other libraries and APIs]. For example, your
|
||||||
|
| pipeline component can write additional information and data
|
||||||
|
| directly to the #[code Doc] or #[code Token] as custom attributes,
|
||||||
|
| while making sure no information is lost in the process. This can
|
||||||
|
| be output generated by other libraries and models, or an external
|
||||||
|
| service with a REST API.
|
||||||
|
+item
|
||||||
|
| #[strong Debugging and logging]. For example, a component which
|
||||||
|
| stores and/or exports relevant information about the current state
|
||||||
|
| of the processed document, and insert it at any point of your
|
||||||
|
| pipeline.
|
||||||
|
|
||||||
|
+infobox("Developing third-party extensions")
|
||||||
|
| The new pipeline management and custom attributes finally make it easy
|
||||||
|
| to develop your own spaCy extensions and plugins and share them with
|
||||||
|
| others. Extensions can claim their own #[code ._] namespace and exist as
|
||||||
|
| standalone packages. If you're developing a tool or library and want to
|
||||||
|
| make it easy for others to use it with spaCy and add it to their
|
||||||
|
| pipeline, all you have to do is expose a function that takes a
|
||||||
|
| #[code Doc], modifies it and returns it. For more details and
|
||||||
|
| #[strong best practices], see the section on
|
||||||
|
| #[+a("#extensions") developing spaCy extensions].
|
||||||
|
|
||||||
|
+h(3, "custom-components-user-hooks") User hooks
|
||||||
|
|
||||||
p
|
p
|
||||||
| While it's generally recommended to use the #[code Doc._], #[code Span._]
|
| While it's generally recommended to use the #[code Doc._], #[code Span._]
|
||||||
|
|
|
@ -1,126 +0,0 @@
|
||||||
//- 💫 DOCS > USAGE > PROCESSING PIPELINES > EXAMPLES
|
|
||||||
|
|
||||||
p
|
|
||||||
| To see real-world examples of pipeline factories and components in action,
|
|
||||||
| you can have a look at the source of spaCy's built-in components, e.g.
|
|
||||||
| the #[+api("tagger") #[code Tagger]], #[+api("parser") #[code Parser]] or
|
|
||||||
| #[+api("entityrecognizer") #[code EntityRecongnizer]].
|
|
||||||
|
|
||||||
+h(3, "example1") Example: Custom sentence segmentation logic
|
|
||||||
|
|
||||||
p
|
|
||||||
| Let's say you want to implement custom logic to improve spaCy's sentence
|
|
||||||
| boundary detection. Currently, sentence segmentation is based on the
|
|
||||||
| dependency parse, which doesn't always produce ideal results. The custom
|
|
||||||
| logic should therefore be applied #[strong after] tokenization, but
|
|
||||||
| #[strong before] the dependency parsing – this way, the parser can also
|
|
||||||
| take advantage of the sentence boundaries.
|
|
||||||
|
|
||||||
+code.
|
|
||||||
def sbd_component(doc):
|
|
||||||
for i, token in enumerate(doc[:-2]):
|
|
||||||
# define sentence start if period + titlecase token
|
|
||||||
if token.text == '.' and doc[i+1].is_title:
|
|
||||||
doc[i+1].sent_start = True
|
|
||||||
return doc
|
|
||||||
|
|
||||||
p
|
|
||||||
| In this case, we simply want to add the component to the existing
|
|
||||||
| pipeline of the English model. We can do this by inserting it at index 0
|
|
||||||
| of #[code nlp.pipeline]:
|
|
||||||
|
|
||||||
+code.
|
|
||||||
nlp = spacy.load('en')
|
|
||||||
nlp.pipeline.insert(0, sbd_component)
|
|
||||||
|
|
||||||
p
|
|
||||||
| When you call #[code nlp] on some text, spaCy will tokenize it to create
|
|
||||||
| a #[code Doc] object, and first call #[code sbd_component] on it, followed
|
|
||||||
| by the model's default pipeline.
|
|
||||||
|
|
||||||
+h(3, "example2") Example: Sentiment model
|
|
||||||
|
|
||||||
p
|
|
||||||
| Let's say you have trained your own document sentiment model on English
|
|
||||||
| text. After tokenization, you want spaCy to first execute the
|
|
||||||
| #[strong default tensorizer], followed by a custom
|
|
||||||
| #[strong sentiment component] that adds a #[code .sentiment]
|
|
||||||
| property to the #[code Doc], containing your model's sentiment precition.
|
|
||||||
|
|
||||||
p
|
|
||||||
| Your component class will have a #[code from_disk()] method that spaCy
|
|
||||||
| calls to load the model data. When called, the component will compute
|
|
||||||
| the sentiment score, add it to the #[code Doc] and return the modified
|
|
||||||
| document. Optionally, the component can include an #[code update()] method
|
|
||||||
| to allow training the model.
|
|
||||||
|
|
||||||
+code.
|
|
||||||
import pickle
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
class SentimentComponent(object):
|
|
||||||
def __init__(self, vocab):
|
|
||||||
self.weights = None
|
|
||||||
|
|
||||||
def __call__(self, doc):
|
|
||||||
doc.sentiment = sum(self.weights*doc.vector) # set sentiment property
|
|
||||||
return doc
|
|
||||||
|
|
||||||
def from_disk(self, path): # path = model path + factory ID ('sentiment')
|
|
||||||
self.weights = pickle.load(Path(path) / 'weights.bin') # load weights
|
|
||||||
return self
|
|
||||||
|
|
||||||
def update(self, doc, gold): # update weights – allows training!
|
|
||||||
prediction = sum(self.weights*doc.vector)
|
|
||||||
self.weights -= 0.001*doc.vector*(prediction-gold.sentiment)
|
|
||||||
|
|
||||||
p
|
|
||||||
| The factory will initialise the component with the #[code Vocab] object.
|
|
||||||
| To be able to add it to your model's pipeline as #[code 'sentiment'],
|
|
||||||
| it also needs to be registered via
|
|
||||||
| #[+api("spacy#set_factory") #[code set_factory()]].
|
|
||||||
|
|
||||||
+code.
|
|
||||||
def sentiment_factory(vocab):
|
|
||||||
component = SentimentComponent(vocab) # initialise component
|
|
||||||
return component
|
|
||||||
|
|
||||||
spacy.set_factory('sentiment', sentiment_factory)
|
|
||||||
|
|
||||||
p
|
|
||||||
| The above code should be #[strong shipped with your model]. You can use
|
|
||||||
| the #[+api("cli#package") #[code package]] command to create all required
|
|
||||||
| files and directories. The model package will include an
|
|
||||||
| #[+src(gh("spacy-dev-resources", "templates/model/en_model_name/__init__.py")) #[code __init__.py]]
|
|
||||||
| with a #[code load()] method, that will initialise the language class with
|
|
||||||
| the model's pipeline and call the #[code from_disk()] method to load
|
|
||||||
| the model data.
|
|
||||||
|
|
||||||
p
|
|
||||||
| In the model package's meta.json, specify the language class and pipeline
|
|
||||||
| IDs:
|
|
||||||
|
|
||||||
+code("meta.json (excerpt)", "json").
|
|
||||||
{
|
|
||||||
"name": "sentiment_model",
|
|
||||||
"lang": "en",
|
|
||||||
"version": "1.0.0",
|
|
||||||
"spacy_version": ">=2.0.0,<3.0.0",
|
|
||||||
"pipeline": ["tensorizer", "sentiment"]
|
|
||||||
}
|
|
||||||
|
|
||||||
p
|
|
||||||
| When you load your new model, spaCy will call the model's #[code load()]
|
|
||||||
| method. This will return a #[code Language] object with a pipeline
|
|
||||||
| containing the default tensorizer, and the sentiment component returned
|
|
||||||
| by your custom #[code "sentiment"] factory.
|
|
||||||
|
|
||||||
+code.
|
|
||||||
nlp = spacy.load('en_sentiment_model')
|
|
||||||
doc = nlp(u'I love pizza')
|
|
||||||
assert doc.sentiment
|
|
||||||
|
|
||||||
+infobox("Saving and loading models")
|
|
||||||
| For more information and a detailed guide on how to package your model,
|
|
||||||
| see the documentation on
|
|
||||||
| #[+a("/usage/training#saving-loading") saving and loading models].
|
|
|
@ -1,3 +1,110 @@
|
||||||
//- 💫 DOCS > USAGE > PROCESSING PIPELINES > DEVELOPING EXTENSIONS
|
//- 💫 DOCS > USAGE > PROCESSING PIPELINES > DEVELOPING EXTENSIONS
|
||||||
|
|
||||||
+under-construction
|
p
|
||||||
|
| We're very excited about all the new possibilities for community
|
||||||
|
| extensions and plugins in spaCy v2.0, and we can't wait to see what
|
||||||
|
| you build with it! To get you started, here are a few tips, tricks and
|
||||||
|
| best practices:
|
||||||
|
|
||||||
|
+list
|
||||||
|
+item
|
||||||
|
| Make sure to choose a #[strong descriptive and specific name] for
|
||||||
|
| your pipeline component class, and set it as its #[code name]
|
||||||
|
| attribute. Avoid names that are too common or likely to clash with
|
||||||
|
| built-in or a user's other custom components. While it's fine to call
|
||||||
|
| your package "spacy_my_extension", avoid component names including
|
||||||
|
| "spacy", since this can easily lead to confusion.
|
||||||
|
|
||||||
|
+code-wrapper
|
||||||
|
+code-new name = 'myapp_lemmatizer'
|
||||||
|
+code-old name = 'lemmatizer'
|
||||||
|
|
||||||
|
+item
|
||||||
|
| When writing to #[code Doc], #[code Token] or #[code Span] objects,
|
||||||
|
| #[strong use getter functions] wherever possible, and avoid setting
|
||||||
|
| values explicitly. Tokens and spans don't own any data themselves,
|
||||||
|
| so you should provide a function that allows them to compute the
|
||||||
|
| values instead of writing static properties to individual objects.
|
||||||
|
|
||||||
|
+code-wrapper
|
||||||
|
+code-new.
|
||||||
|
is_fruit = lambda token: token.text in ('apple', 'orange')
|
||||||
|
Token.set_extension('is_fruit', getter=is_fruit)
|
||||||
|
+code-old.
|
||||||
|
token._.set_extension('is_fruit', default=False)
|
||||||
|
if token.text in ('apple', 'orange'):
|
||||||
|
token._.set('is_fruit', True)
|
||||||
|
|
||||||
|
+item
|
||||||
|
| Always add your custom attributes to the #[strong global] #[code Doc]
|
||||||
|
| #[code Token] or #[code Span] objects, not a particular instance of
|
||||||
|
| them. Add the attributes #[strong as early as possible], e.g. in
|
||||||
|
| your extension's #[code __init__] method or in the global scope of
|
||||||
|
| your module. This means that in the case of namespace collisions,
|
||||||
|
| the user will see an error immediately, not just when they run their
|
||||||
|
| pipeline.
|
||||||
|
|
||||||
|
+code-wrapper
|
||||||
|
+code-new.
|
||||||
|
from spacy.tokens.doc import Doc
|
||||||
|
def __init__(attr='my_attr'):
|
||||||
|
Doc.set_extension(attr, getter=self.get_doc_attr)
|
||||||
|
+code-old.
|
||||||
|
def __call__(doc):
|
||||||
|
doc.set_extension('my_attr', getter=self.get_doc_attr)
|
||||||
|
|
||||||
|
+item
|
||||||
|
| If your extension is setting properties on the #[code Doc],
|
||||||
|
| #[code Token] or #[code Span], include an option to
|
||||||
|
| #[strong let the user to change those attribute names]. This makes
|
||||||
|
| it easier to avoid namespace collisions and accommodate users with
|
||||||
|
| different naming preferences. We recommend adding an #[code attrs]
|
||||||
|
| argument to the #[code __init__] method of your class so you can
|
||||||
|
| write the names to class attributes and reuse them across your
|
||||||
|
| component.
|
||||||
|
|
||||||
|
+code-wrapper
|
||||||
|
+code-new Doc.set_extension(self.doc_attr, default='some value')
|
||||||
|
+code-old Doc.set_extension('my_doc_attr', default='some value')
|
||||||
|
|
||||||
|
+item
|
||||||
|
| Ideally, extensions should be #[strong standalone packages] with
|
||||||
|
| spaCy and optionally, other packages specified as a dependency. They
|
||||||
|
| can freely assign to their own #[code ._] namespace, but should stick
|
||||||
|
| to that. If your extension's only job is to provide a better
|
||||||
|
| #[code .similarity] implementation, and your docs state this
|
||||||
|
| explicitly, there's no problem with writing to the
|
||||||
|
| #[+a("#custom-components-user-hooks") #[code user_hooks]], and
|
||||||
|
| overwriting spaCy's built-in method. However, a third-party
|
||||||
|
| extension should #[strong never silently overwrite built-ins], or
|
||||||
|
| attributes set by other extensions.
|
||||||
|
|
||||||
|
+item
|
||||||
|
| If you're looking to publish a model that depends on a custom
|
||||||
|
| pipeline component, you can either #[strong require it] in the model
|
||||||
|
| package's dependencies, or – if the component is specific and
|
||||||
|
| lightweight – choose to #[strong ship it with your model package]
|
||||||
|
| and add it to the #[code Language] instance returned by the
|
||||||
|
| model's #[code load()] method. For examples of this, check out the
|
||||||
|
| implementations of spaCy's
|
||||||
|
| #[+api("util#load_model_from_init_py") #[code load_model_from_init_py()]]
|
||||||
|
| and #[+api("util#load_model_from_path") #[code load_model_from_path()]]
|
||||||
|
| utility functions.
|
||||||
|
|
||||||
|
+code-wrapper
|
||||||
|
+code-new.
|
||||||
|
nlp.add_pipe(my_custom_component)
|
||||||
|
return nlp.from_disk(model_path)
|
||||||
|
|
||||||
|
+item
|
||||||
|
| Once you're ready to share your extension with others, make sure to
|
||||||
|
| #[strong add docs and installation instructions] (you can
|
||||||
|
| always link to this page for more info). Make it easy for others to
|
||||||
|
| install and use your extension, for example by uploading it to
|
||||||
|
| #[+a("https://pypi.python.org") PyPi]. If you're sharing your code on
|
||||||
|
| GitHub, don't forget to tag it
|
||||||
|
| with #[+a("https://github.com/search?q=topic%3Aspacy") #[code spacy]]
|
||||||
|
| and #[+a("https://github.com/search?q=topic%3Aspacy-pipeline") #[code spacy-pipeline]]
|
||||||
|
| to help people find it. If you post it on Twitter, feel free to tag
|
||||||
|
| #[+a("https://twitter.com/" + SOCIAL.twitter) @#{SOCIAL.twitter}]
|
||||||
|
| so we can check it out.
|
||||||
|
|
|
@ -12,6 +12,10 @@ include _spacy-101/_pipelines
|
||||||
+h(2, "custom-components") Creating custom pipeline components
|
+h(2, "custom-components") Creating custom pipeline components
|
||||||
include _processing-pipelines/_custom-components
|
include _processing-pipelines/_custom-components
|
||||||
|
|
||||||
|
+section("extensions")
|
||||||
|
+h(2, "extensions") Developing spaCy extensions
|
||||||
|
include _processing-pipelines/_extensions
|
||||||
|
|
||||||
+section("multithreading")
|
+section("multithreading")
|
||||||
+h(2, "multithreading") Multi-threading
|
+h(2, "multithreading") Multi-threading
|
||||||
include _processing-pipelines/_multithreading
|
include _processing-pipelines/_multithreading
|
||||||
|
@ -19,7 +23,3 @@ include _spacy-101/_pipelines
|
||||||
+section("serialization")
|
+section("serialization")
|
||||||
+h(2, "serialization") Serialization
|
+h(2, "serialization") Serialization
|
||||||
include _processing-pipelines/_serialization
|
include _processing-pipelines/_serialization
|
||||||
|
|
||||||
+section("extensions")
|
|
||||||
+h(2, "extensions") Developing spaCy extensions
|
|
||||||
include _processing-pipelines/_extensions
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user