mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
7a6edeea68
23
spacy/_ml.py
23
spacy/_ml.py
|
@ -359,8 +359,6 @@ def get_token_vectors(tokens_attrs_vectors, drop=0.):
|
||||||
def backward(d_output, sgd=None):
|
def backward(d_output, sgd=None):
|
||||||
return (tokens, d_output)
|
return (tokens, d_output)
|
||||||
return vectors, backward
|
return vectors, backward
|
||||||
|
|
||||||
|
|
||||||
def fine_tune(embedding, combine=None):
|
def fine_tune(embedding, combine=None):
|
||||||
if combine is not None:
|
if combine is not None:
|
||||||
raise NotImplementedError(
|
raise NotImplementedError(
|
||||||
|
@ -372,22 +370,25 @@ def fine_tune(embedding, combine=None):
|
||||||
vecs, bp_vecs = embedding.begin_update(docs, drop=drop)
|
vecs, bp_vecs = embedding.begin_update(docs, drop=drop)
|
||||||
flat_tokvecs = embedding.ops.flatten(tokvecs)
|
flat_tokvecs = embedding.ops.flatten(tokvecs)
|
||||||
flat_vecs = embedding.ops.flatten(vecs)
|
flat_vecs = embedding.ops.flatten(vecs)
|
||||||
|
alpha = model.mix
|
||||||
|
minus = 1-model.mix
|
||||||
output = embedding.ops.unflatten(
|
output = embedding.ops.unflatten(
|
||||||
(model.mix[0] * flat_vecs + model.mix[1] * flat_tokvecs),
|
(alpha * flat_tokvecs + minus * flat_vecs), lengths)
|
||||||
lengths)
|
|
||||||
|
|
||||||
def fine_tune_bwd(d_output, sgd=None):
|
def fine_tune_bwd(d_output, sgd=None):
|
||||||
bp_vecs(d_output, sgd=sgd)
|
|
||||||
flat_grad = model.ops.flatten(d_output)
|
flat_grad = model.ops.flatten(d_output)
|
||||||
model.d_mix[1] += flat_tokvecs.dot(flat_grad.T).sum()
|
model.d_mix += flat_tokvecs.dot(flat_grad.T).sum()
|
||||||
model.d_mix[0] += flat_vecs.dot(flat_grad.T).sum()
|
model.d_mix += 1-flat_vecs.dot(flat_grad.T).sum()
|
||||||
if sgd is not None:
|
|
||||||
sgd(model._mem.weights, model._mem.gradient, key=model.id)
|
bp_vecs([d_o * minus for d_o in d_output], sgd=sgd)
|
||||||
|
d_output = [d_o * alpha for d_o in d_output]
|
||||||
|
sgd(model._mem.weights, model._mem.gradient, key=model.id)
|
||||||
|
model.mix = model.ops.xp.minimum(model.mix, 1.0)
|
||||||
return d_output
|
return d_output
|
||||||
return output, fine_tune_bwd
|
return output, fine_tune_bwd
|
||||||
model = wrap(fine_tune_fwd, embedding)
|
model = wrap(fine_tune_fwd, embedding)
|
||||||
model.mix = model._mem.add((model.id, 'mix'), (2,))
|
model.mix = model._mem.add((model.id, 'mix'), (1,))
|
||||||
model.mix.fill(1.)
|
model.mix.fill(0.0)
|
||||||
model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix'))
|
model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix'))
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
|
@ -94,7 +94,7 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
|
||||||
docs, golds = zip(*batch)
|
docs, golds = zip(*batch)
|
||||||
nlp.update(docs, golds, sgd=optimizer,
|
nlp.update(docs, golds, sgd=optimizer,
|
||||||
drop=next(dropout_rates), losses=losses,
|
drop=next(dropout_rates), losses=losses,
|
||||||
update_tensors=True)
|
update_shared=True)
|
||||||
pbar.update(sum(len(doc) for doc in docs))
|
pbar.update(sum(len(doc) for doc in docs))
|
||||||
|
|
||||||
with nlp.use_params(optimizer.averages):
|
with nlp.use_params(optimizer.averages):
|
||||||
|
|
Loading…
Reference in New Issue
Block a user