mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
Update rehearsal example
This commit is contained in:
parent
3ef4da3503
commit
7ac0f9626c
|
@ -4,7 +4,7 @@ import random
|
|||
import srsly
|
||||
import spacy
|
||||
from spacy.gold import GoldParse
|
||||
from spacy.util import minibatch
|
||||
from spacy.util import minibatch, compounding
|
||||
|
||||
|
||||
LABEL = "ANIMAL"
|
||||
|
@ -54,9 +54,17 @@ def main(model_name, unlabelled_loc):
|
|||
nlp.get_pipe("ner").add_label(LABEL)
|
||||
raw_docs = list(read_raw_data(nlp, unlabelled_loc))
|
||||
optimizer = nlp.resume_training()
|
||||
# Avoid use of Adam when resuming training. I don't understand this well
|
||||
# yet, but I'm getting weird results from Adam. Try commenting out the
|
||||
# nlp.update(), and using Adam -- you'll find the models drift apart.
|
||||
# I guess Adam is losing precision, introducing gradient noise?
|
||||
optimizer.alpha = 0.1
|
||||
optimizer.b1 = 0.0
|
||||
optimizer.b2 = 0.0
|
||||
|
||||
# get names of other pipes to disable them during training
|
||||
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"]
|
||||
sizes = compounding(1.0, 4.0, 1.001)
|
||||
with nlp.disable_pipes(*other_pipes):
|
||||
for itn in range(n_iter):
|
||||
random.shuffle(TRAIN_DATA)
|
||||
|
@ -64,13 +72,22 @@ def main(model_name, unlabelled_loc):
|
|||
losses = {}
|
||||
r_losses = {}
|
||||
# batch up the examples using spaCy's minibatch
|
||||
raw_batches = minibatch(raw_docs, size=batch_size)
|
||||
for doc, gold in TRAIN_DATA:
|
||||
nlp.update([doc], [gold], sgd=optimizer, drop=dropout, losses=losses)
|
||||
raw_batches = minibatch(raw_docs, size=4)
|
||||
for batch in minibatch(TRAIN_DATA, size=sizes):
|
||||
docs, golds = zip(*batch)
|
||||
nlp.update(docs, golds, sgd=optimizer, drop=dropout, losses=losses)
|
||||
raw_batch = list(next(raw_batches))
|
||||
nlp.rehearse(raw_batch, sgd=optimizer, losses=r_losses)
|
||||
print("Losses", losses)
|
||||
print("R. Losses", r_losses)
|
||||
print(nlp.get_pipe('ner').model.unseen_classes)
|
||||
test_text = "Do you like horses?"
|
||||
doc = nlp(test_text)
|
||||
print("Entities in '%s'" % test_text)
|
||||
for ent in doc.ents:
|
||||
print(ent.label_, ent.text)
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Reference in New Issue
Block a user