Merge remote-tracking branch 'upstream/develop' into indonesian

This commit is contained in:
Jim Geovedi 2017-08-18 10:14:46 +07:00
commit 7ae45bffcf
31 changed files with 184 additions and 235 deletions

1
.gitignore vendored
View File

@ -40,7 +40,6 @@ venv/
# Distribution / packaging
env/
bin/
build/
develop-eggs/
dist/

View File

@ -1,3 +1,4 @@
recursive-include include *.h
include LICENSE
include README.rst
include bin/spacy

1
bin/spacy Normal file
View File

@ -0,0 +1 @@
python -m spacy "$@"

View File

@ -187,6 +187,7 @@ def setup_package():
url=about['__uri__'],
license=about['__license__'],
ext_modules=ext_modules,
scripts=['bin/spacy'],
install_requires=[
'numpy>=1.7',
'murmurhash>=0.28,<0.29',

View File

@ -5,12 +5,10 @@ from thinc.neural._classes.hash_embed import HashEmbed
from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural.util import get_array_module
import random
import cytoolz
from thinc.neural._classes.convolution import ExtractWindow
from thinc.neural._classes.static_vectors import StaticVectors
from thinc.neural._classes.batchnorm import BatchNorm
from thinc.neural._classes.layernorm import LayerNorm as LN
from thinc.neural._classes.resnet import Residual
from thinc.neural import ReLu
from thinc.neural._classes.selu import SELU
@ -21,7 +19,7 @@ from thinc.api import FeatureExtracter, with_getitem
from thinc.neural.pooling import Pooling, max_pool, mean_pool, sum_pool
from thinc.neural._classes.attention import ParametricAttention
from thinc.linear.linear import LinearModel
from thinc.api import uniqued, wrap, flatten_add_lengths
from thinc.api import uniqued, wrap
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP
from .tokens.doc import Doc
@ -55,27 +53,6 @@ def _logistic(X, drop=0.):
return Y, logistic_bwd
@layerize
def add_tuples(X, drop=0.):
"""Give inputs of sequence pairs, where each sequence is (vals, length),
sum the values, returning a single sequence.
If input is:
((vals1, length), (vals2, length)
Output is:
(vals1+vals2, length)
vals are a single tensor for the whole batch.
"""
(vals1, length1), (vals2, length2) = X
assert length1 == length2
def add_tuples_bwd(dY, sgd=None):
return (dY, dY)
return (vals1+vals2, length), add_tuples_bwd
def _zero_init(model):
def _zero_init_impl(self, X, y):
self.W.fill(0)
@ -84,7 +61,6 @@ def _zero_init(model):
model.W.fill(0.)
return model
@layerize
def _preprocess_doc(docs, drop=0.):
keys = [doc.to_array([LOWER]) for doc in docs]
@ -96,6 +72,7 @@ def _preprocess_doc(docs, drop=0.):
return (keys, vals, lengths), None
def _init_for_precomputed(W, ops):
if (W**2).sum() != 0.:
return
@ -103,7 +80,6 @@ def _init_for_precomputed(W, ops):
ops.xavier_uniform_init(reshaped)
W[:] = reshaped.reshape(W.shape)
@describe.on_data(_set_dimensions_if_needed)
@describe.attributes(
nI=Dimension("Input size"),
@ -209,7 +185,7 @@ class PrecomputableMaxouts(Model):
def Tok2Vec(width, embed_size, preprocess=None):
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE]
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
norm = get_col(cols.index(NORM)) >> HashEmbed(width, embed_size, name='embed_lower')
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2, name='embed_prefix')
@ -220,9 +196,9 @@ def Tok2Vec(width, embed_size, preprocess=None):
tok2vec = (
with_flatten(
asarray(Model.ops, dtype='uint64')
>> uniqued(embed, column=5)
>> LN(Maxout(width, width*4, pieces=3))
>> Residual(ExtractWindow(nW=1) >> LN(Maxout(width, width*3)))
>> embed
>> Maxout(width, width*4, pieces=3)
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3)),
@ -321,7 +297,7 @@ def zero_init(model):
def doc2feats(cols=None):
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE]
def forward(docs, drop=0.):
feats = []
for doc in docs:
@ -347,36 +323,6 @@ def get_token_vectors(tokens_attrs_vectors, drop=0.):
return vectors, backward
def fine_tune(embedding, combine=None):
if combine is not None:
raise NotImplementedError(
"fine_tune currently only supports addition. Set combine=None")
def fine_tune_fwd(docs_tokvecs, drop=0.):
docs, tokvecs = docs_tokvecs
lengths = model.ops.asarray([len(doc) for doc in docs], dtype='i')
vecs, bp_vecs = embedding.begin_update(docs, drop=drop)
flat_tokvecs = embedding.ops.flatten(tokvecs)
flat_vecs = embedding.ops.flatten(vecs)
output = embedding.ops.unflatten(
(model.mix[0] * flat_vecs + model.mix[1] * flat_tokvecs),
lengths)
def fine_tune_bwd(d_output, sgd=None):
bp_vecs(d_output, sgd=sgd)
flat_grad = model.ops.flatten(d_output)
model.d_mix[1] += flat_tokvecs.dot(flat_grad.T).sum()
model.d_mix[0] += flat_vecs.dot(flat_grad.T).sum()
sgd(model._mem.weights, model._mem.gradient, key=model.id)
return d_output
return output, fine_tune_bwd
model = wrap(fine_tune_fwd, embedding)
model.mix = model._mem.add((model.id, 'mix'), (2,))
model.mix.fill(1.)
model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix'))
return model
@layerize
def flatten(seqs, drop=0.):
if isinstance(seqs[0], numpy.ndarray):
@ -423,26 +369,6 @@ def preprocess_doc(docs, drop=0.):
vals = ops.allocate(keys.shape[0]) + 1
return (keys, vals, lengths), None
def getitem(i):
def getitem_fwd(X, drop=0.):
return X[i], None
return layerize(getitem_fwd)
def build_tagger_model(nr_class, token_vector_width, **cfg):
with Model.define_operators({'>>': chain, '+': add}):
# Input: (doc, tensor) tuples
private_tok2vec = Tok2Vec(token_vector_width, 7500, preprocess=doc2feats())
model = (
fine_tune(private_tok2vec)
>> with_flatten(
Maxout(token_vector_width, token_vector_width)
>> Softmax(nr_class, token_vector_width)
)
)
model.nI = None
return model
def build_text_classifier(nr_class, width=64, **cfg):
nr_vector = cfg.get('nr_vector', 200)

View File

@ -3,7 +3,7 @@
# https://github.com/pypa/warehouse/blob/master/warehouse/__about__.py
__title__ = 'spacy-nightly'
__version__ = '2.0.0a7'
__version__ = '2.0.0a9'
__summary__ = 'Industrial-strength Natural Language Processing (NLP) with Python and Cython'
__uri__ = 'https://spacy.io'
__author__ = 'Explosion AI'

View File

@ -8,7 +8,7 @@ import subprocess
import sys
from .link import link
from ..util import prints
from ..util import prints, get_package_path
from .. import about
@ -32,7 +32,11 @@ def download(cmd, model, direct=False):
version = get_version(model_name, compatibility)
download_model('{m}-{v}/{m}-{v}.tar.gz'.format(m=model_name, v=version))
try:
link(None, model_name, model, force=True)
# Get package path here because link uses
# pip.get_installed_distributions() to check if model is a package,
# which fails if model was just installed via subprocess
package_path = get_package_path(model_name)
link(None, model_name, model, force=True, model_path=package_path)
except:
# Dirty, but since spacy.download and the auto-linking is mostly
# a convenience wrapper, it's best to show a success message and

View File

@ -14,7 +14,7 @@ from .. import util
link_name=("name of shortuct link to create", "positional", None, str),
force=("force overwriting of existing link", "flag", "f", bool)
)
def link(cmd, origin, link_name, force=False):
def link(cmd, origin, link_name, force=False, model_path=None):
"""
Create a symlink for models within the spacy/data directory. Accepts
either the name of a pip package, or the local path to the model data
@ -23,7 +23,7 @@ def link(cmd, origin, link_name, force=False):
if util.is_package(origin):
model_path = util.get_package_path(origin)
else:
model_path = Path(origin)
model_path = Path(origin) if model_path is None else Path(model_path)
if not model_path.exists():
prints("The data should be located in %s" % path2str(model_path),
title="Can't locate model data", exits=1)

View File

@ -15,10 +15,11 @@ from .. import about
@plac.annotations(
input_dir=("directory with model data", "positional", None, str),
output_dir=("output parent directory", "positional", None, str),
meta=("path to meta.json", "option", "m", str),
meta_path=("path to meta.json", "option", "m", str),
create_meta=("create meta.json, even if one exists in directory", "flag", "c", bool),
force=("force overwriting of existing folder in output directory", "flag", "f", bool)
)
def package(cmd, input_dir, output_dir, meta=None, force=False):
def package(cmd, input_dir, output_dir, meta_path=None, create_meta=False, force=False):
"""
Generate Python package for model data, including meta and required
installation files. A new directory will be created in the specified
@ -26,7 +27,7 @@ def package(cmd, input_dir, output_dir, meta=None, force=False):
"""
input_path = util.ensure_path(input_dir)
output_path = util.ensure_path(output_dir)
meta_path = util.ensure_path(meta)
meta_path = util.ensure_path(meta_path)
if not input_path or not input_path.exists():
prints(input_path, title="Model directory not found", exits=1)
if not output_path or not output_path.exists():
@ -38,7 +39,7 @@ def package(cmd, input_dir, output_dir, meta=None, force=False):
template_manifest = get_template('MANIFEST.in')
template_init = get_template('xx_model_name/__init__.py')
meta_path = meta_path or input_path / 'meta.json'
if meta_path.is_file():
if not create_meta and meta_path.is_file():
prints(meta_path, title="Reading meta.json from file")
meta = util.read_json(meta_path)
else:

View File

@ -91,8 +91,7 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
for batch in minibatch(train_docs, size=batch_sizes):
docs, golds = zip(*batch)
nlp.update(docs, golds, sgd=optimizer,
drop=next(dropout_rates), losses=losses,
update_tensors=True)
drop=next(dropout_rates), losses=losses)
pbar.update(sum(len(doc) for doc in docs))
with nlp.use_params(optimizer.averages):

View File

@ -15,7 +15,7 @@ def depr_model_download(lang):
lang (unicode): Language shortcut, 'en' or 'de'.
"""
prints("The spacy.%s.download command is now deprecated. Please use "
"python -m spacy download [model name or shortcut] instead. For "
"spacy download [model name or shortcut] instead. For "
"more info, see the documentation:" % lang,
about.__docs_models__,
"Downloading default '%s' model now..." % lang,

View File

@ -277,8 +277,7 @@ class Language(object):
def make_doc(self, text):
return self.tokenizer(text)
def update(self, docs, golds, drop=0., sgd=None, losses=None,
update_tensors=False):
def update(self, docs, golds, drop=0., sgd=None, losses=None):
"""Update the models in the pipeline.
docs (iterable): A batch of `Doc` objects.
@ -311,7 +310,7 @@ class Language(object):
tokvecses, bp_tokvecses = tok2vec.model.begin_update(feats, drop=drop)
d_tokvecses = proc.update((docs, tokvecses), golds,
drop=drop, sgd=get_grads, losses=losses)
if update_tensors and d_tokvecses is not None:
if d_tokvecses is not None:
bp_tokvecses(d_tokvecses, sgd=sgd)
for key, (W, dW) in grads.items():
sgd(W, dW, key=key)
@ -382,18 +381,9 @@ class Language(object):
return optimizer
def evaluate(self, docs_golds):
scorer = Scorer()
docs, golds = zip(*docs_golds)
docs = list(docs)
golds = list(golds)
for pipe in self.pipeline:
if not hasattr(pipe, 'pipe'):
for doc in docs:
pipe(doc)
else:
docs = list(pipe.pipe(docs))
assert len(docs) == len(golds)
for doc, gold in zip(docs, golds):
scorer = Scorer()
for doc, gold in zip(self.pipe(docs, batch_size=32), golds):
scorer.score(doc, gold)
doc.tensor = None
return scorer

View File

@ -42,7 +42,7 @@ from .compat import json_dumps
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP, POS
from ._ml import rebatch, Tok2Vec, flatten, get_col, doc2feats
from ._ml import build_text_classifier, build_tagger_model
from ._ml import build_text_classifier
from .parts_of_speech import X
@ -253,25 +253,23 @@ class NeuralTagger(BaseThincComponent):
self.cfg = dict(cfg)
def __call__(self, doc):
tags = self.predict(([doc], [doc.tensor]))
tags = self.predict([doc.tensor])
self.set_annotations([doc], tags)
return doc
def pipe(self, stream, batch_size=128, n_threads=-1):
for docs in cytoolz.partition_all(batch_size, stream):
docs = list(docs)
tokvecs = [d.tensor for d in docs]
tag_ids = self.predict((docs, tokvecs))
tag_ids = self.predict(tokvecs)
self.set_annotations(docs, tag_ids)
yield from docs
def predict(self, docs_tokvecs):
scores = self.model(docs_tokvecs)
def predict(self, tokvecs):
scores = self.model(tokvecs)
scores = self.model.ops.flatten(scores)
guesses = scores.argmax(axis=1)
if not isinstance(guesses, numpy.ndarray):
guesses = guesses.get()
tokvecs = docs_tokvecs[1]
guesses = self.model.ops.unflatten(guesses,
[tv.shape[0] for tv in tokvecs])
return guesses
@ -296,7 +294,8 @@ class NeuralTagger(BaseThincComponent):
if self.model.nI is None:
self.model.nI = tokvecs[0].shape[1]
tag_scores, bp_tag_scores = self.model.begin_update(docs_tokvecs, drop=drop)
tag_scores, bp_tag_scores = self.model.begin_update(tokvecs, drop=drop)
loss, d_tag_scores = self.get_loss(docs, golds, tag_scores)
d_tokvecs = bp_tag_scores(d_tag_scores, sgd=sgd)
@ -347,7 +346,9 @@ class NeuralTagger(BaseThincComponent):
@classmethod
def Model(cls, n_tags, token_vector_width):
return build_tagger_model(n_tags, token_vector_width)
return with_flatten(
chain(Maxout(token_vector_width, token_vector_width),
Softmax(n_tags, token_vector_width)))
def use_params(self, params):
with self.model.use_params(params):
@ -431,7 +432,7 @@ class NeuralLabeller(NeuralTagger):
@property
def labels(self):
return self.cfg.setdefault('labels', {})
return self.cfg.get('labels', {})
@labels.setter
def labels(self, value):
@ -454,7 +455,9 @@ class NeuralLabeller(NeuralTagger):
@classmethod
def Model(cls, n_tags, token_vector_width):
return build_tagger_model(n_tags, token_vector_width)
return with_flatten(
chain(Maxout(token_vector_width, token_vector_width),
Softmax(n_tags, token_vector_width)))
def get_loss(self, docs, golds, scores):
scores = self.model.ops.flatten(scores)

View File

@ -385,7 +385,6 @@ cdef class ArcEager(TransitionSystem):
for i in range(self.n_moves):
if self.c[i].move == move and self.c[i].label == label:
return self.c[i]
return Transition(clas=0, move=MISSING, label=0)
def move_name(self, int move, attr_t label):
label_str = self.strings[label]

View File

@ -14,4 +14,8 @@ cdef class Parser:
cdef readonly TransitionSystem moves
cdef readonly object cfg
cdef void _parse_step(self, StateC* state,
const float* feat_weights,
int nr_class, int nr_feat, int nr_piece) nogil
#cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil

View File

@ -44,7 +44,7 @@ from thinc.neural.util import get_array_module
from .. import util
from ..util import get_async, get_cuda_stream
from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts
from .._ml import Tok2Vec, doc2feats, rebatch, fine_tune
from .._ml import Tok2Vec, doc2feats, rebatch
from ..compat import json_dumps
from . import _parse_features
@ -237,7 +237,6 @@ cdef class Parser:
token_vector_width = util.env_opt('token_vector_width', token_vector_width)
hidden_width = util.env_opt('hidden_width', hidden_width)
parser_maxout_pieces = util.env_opt('parser_maxout_pieces', 2)
tensors = fine_tune(Tok2Vec(token_vector_width, 7500, preprocess=doc2feats()))
if parser_maxout_pieces == 1:
lower = PrecomputableAffine(hidden_width if depth >= 1 else nr_class,
nF=cls.nr_feature,
@ -249,10 +248,15 @@ cdef class Parser:
nI=token_vector_width)
with Model.use_device('cpu'):
if depth == 0:
upper = chain()
upper.is_noop = True
else:
upper = chain(
clone(Maxout(hidden_width), (depth-1)),
zero_init(Affine(nr_class, drop_factor=0.0))
)
upper.is_noop = False
# TODO: This is an unfortunate hack atm!
# Used to set input dimensions in network.
lower.begin_training(lower.ops.allocate((500, token_vector_width)))
@ -264,7 +268,7 @@ cdef class Parser:
'hidden_width': hidden_width,
'maxout_pieces': parser_maxout_pieces
}
return (tensors, lower, upper), cfg
return (lower, upper), cfg
def __init__(self, Vocab vocab, moves=True, model=True, **cfg):
"""
@ -340,10 +344,12 @@ cdef class Parser:
The number of threads with which to work on the buffer in parallel.
Yields (Doc): Documents, in order.
"""
cdef StateClass parse_state
cdef Doc doc
queue = []
for docs in cytoolz.partition_all(batch_size, docs):
docs = list(docs)
tokvecs = [doc.tensor for doc in docs]
tokvecs = [d.tensor for d in docs]
if beam_width == 1:
parse_states = self.parse_batch(docs, tokvecs)
else:
@ -363,11 +369,8 @@ cdef class Parser:
int nr_class, nr_feat, nr_piece, nr_dim, nr_state
if isinstance(docs, Doc):
docs = [docs]
if isinstance(tokvecses, np.ndarray):
tokvecses = [tokvecses]
tokvecs = self.model[0].ops.flatten(tokvecses)
tokvecs += self.model[0].ops.flatten(self.model[0]((docs, tokvecses)))
nr_state = len(docs)
nr_class = self.moves.n_moves
@ -391,7 +394,14 @@ cdef class Parser:
cdef np.ndarray scores
c_token_ids = <int*>token_ids.data
c_is_valid = <int*>is_valid.data
cdef int has_hidden = not getattr(vec2scores, 'is_noop', False)
while not next_step.empty():
if not has_hidden:
for i in cython.parallel.prange(
next_step.size(), num_threads=6, nogil=True):
self._parse_step(next_step[i],
feat_weights, nr_class, nr_feat, nr_piece)
else:
for i in range(next_step.size()):
st = next_step[i]
st.set_context_tokens(&c_token_ids[i*nr_feat], nr_feat)
@ -419,7 +429,6 @@ cdef class Parser:
cdef int nr_class = self.moves.n_moves
cdef StateClass stcls, output
tokvecs = self.model[0].ops.flatten(tokvecses)
tokvecs += self.model[0].ops.flatten(self.model[0]((docs, tokvecses)))
cuda_stream = get_cuda_stream()
state2vec, vec2scores = self.get_batch_model(len(docs), tokvecs,
cuda_stream, 0.0)
@ -452,6 +461,28 @@ cdef class Parser:
beams.append(beam)
return beams
cdef void _parse_step(self, StateC* state,
const float* feat_weights,
int nr_class, int nr_feat, int nr_piece) nogil:
'''This only works with no hidden layers -- fast but inaccurate'''
#for i in cython.parallel.prange(next_step.size(), num_threads=4, nogil=True):
# self._parse_step(next_step[i], feat_weights, nr_class, nr_feat)
token_ids = <int*>calloc(nr_feat, sizeof(int))
scores = <float*>calloc(nr_class * nr_piece, sizeof(float))
is_valid = <int*>calloc(nr_class, sizeof(int))
state.set_context_tokens(token_ids, nr_feat)
sum_state_features(scores,
feat_weights, token_ids, 1, nr_feat, nr_class * nr_piece)
self.moves.set_valid(is_valid, state)
guess = arg_maxout_if_valid(scores, is_valid, nr_class, nr_piece)
action = self.moves.c[guess]
action.do(state, action.label)
free(is_valid)
free(scores)
free(token_ids)
def update(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None):
if losses is not None and self.name not in losses:
losses[self.name] = 0.
@ -460,9 +491,6 @@ cdef class Parser:
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
docs = [docs]
golds = [golds]
my_tokvecs, bp_my_tokvecs = self.model[0].begin_update(docs_tokvecs, drop=0.)
my_tokvecs = self.model[0].ops.flatten(my_tokvecs)
tokvecs += my_tokvecs
cuda_stream = get_cuda_stream()
@ -512,9 +540,7 @@ cdef class Parser:
break
self._make_updates(d_tokvecs,
backprops, sgd, cuda_stream)
d_tokvecs = self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs])
#bp_my_tokvecs(d_tokvecs, sgd=sgd)
return d_tokvecs
return self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs])
def _init_gold_batch(self, whole_docs, whole_golds):
"""Make a square batch, of length equal to the shortest doc. A long
@ -577,7 +603,7 @@ cdef class Parser:
return names
def get_batch_model(self, batch_size, tokvecs, stream, dropout):
_, lower, upper = self.model
lower, upper = self.model
state2vec = precompute_hiddens(batch_size, tokvecs,
lower, stream, drop=dropout)
return state2vec, upper
@ -667,12 +693,10 @@ cdef class Parser:
def to_disk(self, path, **exclude):
serializers = {
'tok2vec_model': lambda p: p.open('wb').write(
self.model[0].to_bytes()),
'lower_model': lambda p: p.open('wb').write(
self.model[1].to_bytes()),
self.model[0].to_bytes()),
'upper_model': lambda p: p.open('wb').write(
self.model[2].to_bytes()),
self.model[1].to_bytes()),
'vocab': lambda p: self.vocab.to_disk(p),
'moves': lambda p: self.moves.to_disk(p, strings=False),
'cfg': lambda p: p.open('w').write(json_dumps(self.cfg))
@ -693,29 +717,24 @@ cdef class Parser:
self.model, cfg = self.Model(**self.cfg)
else:
cfg = {}
with (path / 'tok2vec_model').open('rb') as file_:
bytes_data = file_.read()
self.model[0].from_bytes(bytes_data)
with (path / 'lower_model').open('rb') as file_:
bytes_data = file_.read()
self.model[1].from_bytes(bytes_data)
self.model[0].from_bytes(bytes_data)
with (path / 'upper_model').open('rb') as file_:
bytes_data = file_.read()
self.model[2].from_bytes(bytes_data)
self.model[1].from_bytes(bytes_data)
self.cfg.update(cfg)
return self
def to_bytes(self, **exclude):
serializers = OrderedDict((
('tok2vec_model', lambda: self.model[0].to_bytes()),
('lower_model', lambda: self.model[1].to_bytes()),
('upper_model', lambda: self.model[2].to_bytes()),
('lower_model', lambda: self.model[0].to_bytes()),
('upper_model', lambda: self.model[1].to_bytes()),
('vocab', lambda: self.vocab.to_bytes()),
('moves', lambda: self.moves.to_bytes(strings=False)),
('cfg', lambda: ujson.dumps(self.cfg))
))
if 'model' in exclude:
exclude['tok2vec_model'] = True
exclude['lower_model'] = True
exclude['upper_model'] = True
exclude.pop('model')
@ -726,7 +745,6 @@ cdef class Parser:
('vocab', lambda b: self.vocab.from_bytes(b)),
('moves', lambda b: self.moves.from_bytes(b, strings=False)),
('cfg', lambda b: self.cfg.update(ujson.loads(b))),
('tok2vec_model', lambda b: None),
('lower_model', lambda b: None),
('upper_model', lambda b: None)
))
@ -736,12 +754,10 @@ cdef class Parser:
self.model, cfg = self.Model(self.moves.n_moves)
else:
cfg = {}
if 'tok2vec_model' in msg:
self.model[0].from_bytes(msg['tok2vec_model'])
if 'lower_model' in msg:
self.model[1].from_bytes(msg['lower_model'])
self.model[0].from_bytes(msg['lower_model'])
if 'upper_model' in msg:
self.model[2].from_bytes(msg['upper_model'])
self.model[1].from_bytes(msg['upper_model'])
self.cfg.update(cfg)
return self

View File

@ -107,8 +107,6 @@ cdef class TransitionSystem:
def is_valid(self, StateClass stcls, move_name):
action = self.lookup_transition(move_name)
if action.move == 0:
return False
return action.is_valid(stcls.c, action.label)
cdef int set_valid(self, int* is_valid, const StateC* st) nogil:

View File

@ -113,7 +113,7 @@ def load_model(name, **overrides):
def load_model_from_link(name, **overrides):
"""Load a model from a shortcut link, or directory in spaCy data path."""
init_file = get_data_path() / name / '__init__.py'
spec = importlib.util.spec_from_file_location(name, init_file)
spec = importlib.util.spec_from_file_location(name, str(init_file))
try:
cls = importlib.util.module_from_spec(spec)
except AttributeError:

View File

@ -103,20 +103,20 @@ mixin button(url, trusted, ...style)
label - [string] aside title (optional or false for no label)
language - [string] language for syntax highlighting (default: "python")
supports basic relevant languages available for PrismJS
icon - [string] icon to display next to code block, mostly used for old/new
prompt - [string] prompt or icon to display next to code block, (mostly used for old/new)
height - [integer] optional height to clip code block to
mixin code(label, language, icon, height)
mixin code(label, language, prompt, height)
pre.c-code-block.o-block(class="lang-#{(language || DEFAULT_SYNTAX)}" class=icon ? "c-code-block--has-icon" : null style=height ? "height: #{height}px" : null)&attributes(attributes)
if label
h4.u-text-label.u-text-label--dark=label
- var icon = (prompt == 'accept' || prompt == 'reject')
if icon
- var classes = {'accept': 'u-color-green', 'reject': 'u-color-red'}
.c-code-block__icon(class=classes[icon] || null class=classes[icon] ? "c-code-block__icon--border" : null)
+icon(icon, 18)
code.c-code-block__content
code.c-code-block__content(data-prompt=icon ? null : prompt)
block

View File

@ -35,6 +35,13 @@
font: normal normal 1.1rem/#{2} $font-code
padding: 1em 2em
&[data-prompt]:before,
content: attr(data-prompt)
margin-right: 0.65em
display: inline-block
vertical-align: middle
opacity: 0.5
//- Inline code

View File

@ -5,16 +5,7 @@ include ../../_includes/_mixins
p
| As of v1.7.0, spaCy comes with new command line helpers to download and
| link models and show useful debugging information. For a list of available
| commands, type #[code python -m spacy]. To make the command even more
| convenient, we recommend
| #[+a("https://askubuntu.com/questions/17536/how-do-i-create-a-permanent-bash-alias/17537#17537") creating an alias]
| mapping #[code python -m spacy] to #[code spacy].
+aside("Why python -m?")
| The problem with a global entry point is that it's resolved by looking up
| entries in your #[code PATH] environment variable. This can give you
| unexpected results, like executing the wrong spaCy installation.
| #[code python -m] prevents fallbacks to system modules.
| commands, type #[code spacy --help].
+infobox("⚠️ Deprecation note")
| As of spaCy 2.0, the #[code model] command to initialise a model data
@ -33,8 +24,8 @@ p
| Direct downloads don't perform any compatibility checks and require the
| model name to be specified with its version (e.g., #[code en_core_web_sm-1.2.0]).
+code(false, "bash").
python -m spacy download [model] [--direct]
+code(false, "bash", "$").
spacy download [model] [--direct]
+table(["Argument", "Type", "Description"])
+row
@ -80,8 +71,8 @@ p
| or use the #[+api("cli#package") #[code package]] command to create a
| model package.
+code(false, "bash").
python -m spacy link [origin] [link_name] [--force]
+code(false, "bash", "$").
spacy link [origin] [link_name] [--force]
+table(["Argument", "Type", "Description"])
+row
@ -112,8 +103,8 @@ p
| markup to copy-paste into #[+a(gh("spacy") + "/issues") GitHub issues].
+code(false, "bash").
python -m spacy info [--markdown]
python -m spacy info [model] [--markdown]
spacy info [--markdown]
spacy info [model] [--markdown]
+table(["Argument", "Type", "Description"])
+row
@ -139,8 +130,8 @@ p
| functions. The right converter is chosen based on the file extension of
| the input file. Currently only supports #[code .conllu].
+code(false, "bash").
python -m spacy convert [input_file] [output_dir] [--n-sents] [--morphology]
+code(false, "bash", "$").
spacy convert [input_file] [output_dir] [--n-sents] [--morphology]
+table(["Argument", "Type", "Description"])
+row
@ -174,8 +165,8 @@ p
| Train a model. Expects data in spaCy's
| #[+a("/docs/api/annotation#json-input") JSON format].
+code(false, "bash").
python -m spacy train [lang] [output_dir] [train_data] [dev_data] [--n-iter] [--n-sents] [--use-gpu] [--no-tagger] [--no-parser] [--no-entities]
+code(false, "bash", "$").
spacy train [lang] [output_dir] [train_data] [dev_data] [--n-iter] [--n-sents] [--use-gpu] [--no-tagger] [--no-parser] [--no-entities]
+table(["Argument", "Type", "Description"])
+row
@ -345,8 +336,8 @@ p
| sure you're always using the latest versions. This means you need to be
| connected to the internet to use this command.
+code(false, "bash").
python -m spacy package [input_dir] [output_dir] [--meta] [--force]
+code(false, "bash", "$").
spacy package [input_dir] [output_dir] [--meta] [--force]
+table(["Argument", "Type", "Description"])
+row
@ -360,10 +351,17 @@ p
+cell Directory to create package folder in.
+row
+cell #[code meta]
+cell #[code --meta-path], #[code -m]
+cell option
+cell Path to meta.json file (optional).
+row
+cell #[code --create-meta], #[code -c]
+cell flag
+cell
| Create a meta.json file on the command line, even if one already
| exists in the directory.
+row
+cell #[code --force], #[code -f]
+cell flag

View File

@ -8,9 +8,9 @@ p
+aside-code("Download language models", "bash").
python -m spacy download en
python -m spacy download de
python -m spacy download fr
spacy download en
spacy download de
spacy download fr
+table([ "Language", "Token", "SBD", "Lemma", "POS", "NER", "Dep", "Vector", "Sentiment"])
+row

View File

@ -205,7 +205,7 @@ p
+infobox("Why lazy-loading?")
| Some languages contain large volumes of custom data, like lemmatizer
| loopup tables, or complex regular expression that are expensive to
| lookup tables, or complex regular expression that are expensive to
| compute. As of spaCy v2.0, #[code Language] classes are not imported on
| initialisation and are only loaded when you import them directly, or load
| a model that requires a language to be loaded. To lazy-load languages in
@ -789,4 +789,4 @@ p
| model use the using spaCy's #[+api("cli#train") #[code train]] command:
+code(false, "bash").
python -m spacy train [lang] [output_dir] [train_data] [dev_data] [--n-iter] [--n-sents] [--use-gpu] [--no-tagger] [--no-parser] [--no-entities]
spacy train [lang] [output_dir] [train_data] [dev_data] [--n-iter] [--n-sents] [--use-gpu] [--no-tagger] [--no-parser] [--no-entities]

View File

@ -32,10 +32,10 @@ p
+qs({package: 'source'}) pip install -r requirements.txt
+qs({package: 'source'}) pip install -e .
+qs({model: 'en'}) python -m spacy download en
+qs({model: 'de'}) python -m spacy download de
+qs({model: 'fr'}) python -m spacy download fr
+qs({model: 'es'}) python -m spacy download es
+qs({model: 'en'}) spacy download en
+qs({model: 'de'}) spacy download de
+qs({model: 'fr'}) spacy download fr
+qs({model: 'es'}) spacy download es
+h(2, "installation") Installation instructions
@ -52,7 +52,7 @@ p Using pip, spaCy releases are currently only available as source packages.
| and available models, see the #[+a("/docs/usage/models") docs on models].
+code.o-no-block.
python -m spacy download en
spacy download en
&gt;&gt;&gt; import spacy
&gt;&gt;&gt; nlp = spacy.load('en')
@ -312,7 +312,9 @@ p
| This error may occur when running the #[code spacy] command from the
| command line. spaCy does not currently add an entry to our #[code PATH]
| environment variable, as this can lead to unexpected results, especially
| when using #[code virtualenv]. Run the command with #[code python -m],
| when using #[code virtualenv]. Instead, spaCy adds an auto-alias that
| maps #[code spacy] to #[code python -m spacy]. If this is not working as
| expected, run the command with #[code python -m], yourself
| for example #[code python -m spacy download en]. For more info on this,
| see #[+api("cli#download") download].

View File

@ -10,8 +10,8 @@ p
+h(2, "models") Install models and process text
+code(false, "bash").
python -m spacy download en
python -m spacy download de
spacy download en
spacy download de
+code.
import spacy

View File

@ -20,7 +20,7 @@ p
+quickstart(QUICKSTART_MODELS, "Quickstart", "Install a default model, get the code to load it from within spaCy and an example to test it. For more options, see the section on available models below.")
for models, lang in MODELS
- var package = (models.length == 1) ? models[0] : models.find(function(m) { return m.def })
+qs({lang: lang}) python -m spacy download #{lang}
+qs({lang: lang}) spacy download #{lang}
+qs({lang: lang}, "divider")
+qs({lang: lang, load: "module"}, "python") import #{package.id}
+qs({lang: lang, load: "module"}, "python") nlp = #{package.id}.load()
@ -52,16 +52,16 @@ p
| #[+api("cli#download") #[code download]] command. It takes care of
| finding the best-matching model compatible with your spaCy installation.
- var models = Object.keys(MODELS).map(function(lang) { return "python -m spacy download " + lang })
- var models = Object.keys(MODELS).map(function(lang) { return "spacy download " + lang })
+code(false, "bash").
# out-of-the-box: download best-matching default model
#{Object.keys(MODELS).map(function(l) {return "python -m spacy download " + l}).join('\n')}
#{Object.keys(MODELS).map(function(l) {return "spacy download " + l}).join('\n')}
# download best-matching version of specific model for your spaCy installation
python -m spacy download en_core_web_md
spacy download en_core_web_md
# download exact model version (doesn't create shortcut link)
python -m spacy download en_core_web_md-1.2.0 --direct
spacy download en_core_web_md-1.2.0 --direct
p
| The download command will #[+a("#download-pip") install the model] via
@ -72,7 +72,7 @@ p
+code(false, "bash").
pip install spacy
python -m spacy download en
spacy download en
+code.
import spacy
@ -179,8 +179,8 @@ p
| model names or IDs. And your system already comes with a native solution
| to mapping unicode aliases to file paths: symbolic links.
+code(false, "bash").
python -m spacy link [package name or path] [shortcut] [--force]
+code(false, "bash", "$").
spacy link [package name or path] [shortcut] [--force]
p
| The first argument is the #[strong package name] (if the model was

View File

@ -85,7 +85,7 @@ p
}
+code(false, "bash").
python -m spacy package /home/me/data/en_example_model /home/me/my_models
spacy package /home/me/data/en_example_model /home/me/my_models
p This command will create a model package directory that should look like this:

View File

@ -102,7 +102,7 @@ p
| CLI command to create all required files and directories.
+code(false, "bash").
python -m spacy package /home/me/data/en_technology /home/me/my_models
spacy package /home/me/data/en_technology /home/me/my_models
p
| To build the package and create a #[code .tar.gz] archive, run

View File

@ -238,11 +238,11 @@ p
+h(3, "features-models") Neural network models for English, German, French, Spanish and multi-language NER
+aside-code("Example", "bash").
python -m spacy download en # default English model
python -m spacy download de # default German model
python -m spacy download fr # default French model
python -m spacy download es # default Spanish model
python -m spacy download xx_ent_wiki_sm # multi-language NER
spacy download en # default English model
spacy download de # default German model
spacy download fr # default French model
spacy download es # default Spanish model
spacy download xx_ent_wiki_sm # multi-language NER
p
| spaCy v2.0 comes with new and improved neural network models for English,

View File

@ -259,7 +259,7 @@ p
| notebook, the visualizations will be included as HTML.
+code("Jupyter Example").
# don't forget to install a model, e.g.: python -m spacy download en
# don't forget to install a model, e.g.: spacy download en
import spacy
from spacy import displacy

View File

@ -68,7 +68,7 @@ include _includes/_mixins
+grid
+grid-col("two-thirds")
+terminal("lightning_tour.py").
# Install: pip install spacy && python -m spacy download en
# Install: pip install spacy && spacy download en
import spacy
# Load English tokenizer, tagger, parser, NER and word vectors