mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Update entry points docs [ci skip]
This commit is contained in:
parent
655b434553
commit
7b59a919e6
18
website/docs/images/displacy-ent-snek.html
Normal file
18
website/docs/images/displacy-ent-snek.html
Normal file
|
@ -0,0 +1,18 @@
|
|||
<div
|
||||
class="entities"
|
||||
style="line-height: 2.5; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol'; font-size: 16px"
|
||||
>
|
||||
🌱🌿 <mark
|
||||
class="entity"
|
||||
style="background: #3dff74; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em; box-decoration-break: clone; -webkit-box-decoration-break: clone"
|
||||
>🐍 <span
|
||||
style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; text-transform: uppercase; vertical-align: middle; margin-left: 0.5rem"
|
||||
>SNEK</span
|
||||
></mark> ____ 🌳🌲 ____ <mark
|
||||
class="entity"
|
||||
style="background: #cfc5ff; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em; box-decoration-break: clone; -webkit-box-decoration-break: clone"
|
||||
>👨🌾 <span
|
||||
style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; text-transform: uppercase; vertical-align: middle; margin-left: 0.5rem"
|
||||
>HUMAN</span
|
||||
></mark> 🏘️
|
||||
</div>
|
|
@ -238,13 +238,31 @@ custom components to spaCy automatically.
|
|||
|
||||
## Using entry points {#entry-points new="2.1"}
|
||||
|
||||
Entry points let you expose parts of a Python package you write to other Python
|
||||
packages. This lets one application easily customize the behavior of another, by
|
||||
exposing an entry point in its `setup.py`. For a quick and fun intro to entry
|
||||
points in Python, check out
|
||||
[this excellent blog post](https://amir.rachum.com/blog/2017/07/28/python-entry-points/).
|
||||
spaCy can load custom function from several different entry points to add
|
||||
pipeline component factories, language classes and other settings. To make spaCy
|
||||
use your entry points, your package needs to expose them and it needs to be
|
||||
installed in the same environment – that's it.
|
||||
|
||||
| Entry point | Description |
|
||||
| ------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| [`spacy_factories`](#entry-points-components) | Group of entry points for pipeline component factories to add to [`Language.factories`](/usage/processing-pipelines#custom-components-factories), keyed by component name. |
|
||||
| [`spacy_languages`](#entry-points-languages) | Group of entry points for custom [`Language` subclasses](/usage/adding-languages), keyed by language shortcut. |
|
||||
| [`spacy_displacy_colors`](#entry-points-displacy) <Tag variant="new">2.2</Tag> | Group of entry points of custom label colors for the [displaCy visualizer](/usage/visualizers#ent). The key name doesn't matter, but it should point to a dict of labels and color values. Useful for custom models that predict different entity types. |
|
||||
|
||||
### Custom components via entry points {#entry-points-components}
|
||||
|
||||
When you load a model, spaCy will generally use the model's `meta.json` to set
|
||||
up the language class and construct the pipeline. The pipeline is specified as a
|
||||
list of strings, e.g. `"pipeline": ["tagger", "paser", "ner"]`. For each of
|
||||
those strings, spaCy will call `nlp.create_pipe` and look up the name in the
|
||||
[built-in factories](#custom-components-factories). If your model wanted to
|
||||
specify its own custom components, you usually have to write to
|
||||
`Language.factories` _before_ loading the model.
|
||||
[built-in factories](/usage/processing-pipelines#custom-components-factories).
|
||||
If your model wanted to specify its own custom components, you usually have to
|
||||
write to `Language.factories` _before_ loading the model.
|
||||
|
||||
```python
|
||||
pipe = nlp.create_pipe("custom_component") # fails 👎
|
||||
|
@ -260,13 +278,11 @@ added to the built-in factories when the `Language` class is initialized. If a
|
|||
package in the same environment exposes spaCy entry points, all of this happens
|
||||
automatically and no further user action is required.
|
||||
|
||||
#### Custom components via entry points {#entry-points-components}
|
||||
|
||||
For a quick and fun intro to entry points in Python, I recommend
|
||||
[this excellent blog post](https://amir.rachum.com/blog/2017/07/28/python-entry-points/).
|
||||
To stick with the theme of the post, consider the following custom spaCy
|
||||
extension which is initialized with the shared `nlp` object and will print a
|
||||
snake when it's called as a pipeline component.
|
||||
To stick with the theme of
|
||||
[this entry points blog post](https://amir.rachum.com/blog/2017/07/28/python-entry-points/),
|
||||
consider the following custom spaCy extension which is initialized with the
|
||||
shared `nlp` object and will print a snake when it's called as a pipeline
|
||||
component.
|
||||
|
||||
> #### Package directory structure
|
||||
>
|
||||
|
@ -304,15 +320,13 @@ entry to the factories, you can now expose it in your `setup.py` via the
|
|||
`entry_points` dictionary:
|
||||
|
||||
```python
|
||||
### setup.py {highlight="5-8"}
|
||||
### setup.py {highlight="5-7"}
|
||||
from setuptools import setup
|
||||
|
||||
setup(
|
||||
name="snek",
|
||||
entry_points={
|
||||
"spacy_factories": [
|
||||
"snek = snek:SnekFactory"
|
||||
]
|
||||
"spacy_factories": ["snek = snek:SnekFactory"]
|
||||
}
|
||||
)
|
||||
```
|
||||
|
@ -410,7 +424,7 @@ The above example will serialize the current snake in a `snek.txt` in the model
|
|||
data directory. When a model using the `snek` component is loaded, it will open
|
||||
the `snek.txt` and make it available to the component.
|
||||
|
||||
#### Custom language classes via entry points {#entry-points-components}
|
||||
### Custom language classes via entry points {#entry-points-languages}
|
||||
|
||||
To stay with the theme of the previous example and
|
||||
[this blog post on entry points](https://amir.rachum.com/blog/2017/07/28/python-entry-points/),
|
||||
|
@ -446,12 +460,8 @@ from setuptools import setup
|
|||
setup(
|
||||
name="snek",
|
||||
entry_points={
|
||||
"spacy_factories": [
|
||||
"snek = snek:SnekFactory"
|
||||
]
|
||||
+ "spacy_languages": [
|
||||
+ "sk = snek:SnekLanguage"
|
||||
+ ]
|
||||
"spacy_factories": ["snek = snek:SnekFactory"],
|
||||
+ "spacy_languages": ["snk = snek:SnekLanguage"]
|
||||
}
|
||||
)
|
||||
```
|
||||
|
@ -481,6 +491,50 @@ SnekLanguage = get_lang_class("snk")
|
|||
nlp = SnekLanguage()
|
||||
```
|
||||
|
||||
### Custom displaCy colors via entry points {#entry-points-displacy}
|
||||
|
||||
If you're training a named entity recognition model for a custom domain, you may
|
||||
end up training different labels that don't have pre-defined colors in the
|
||||
[`displacy` visualizer](/usage/visualizers#ent). The `spacy_displacy_colors`
|
||||
entry point lets you define a dictionary of entity labels mapped to their color
|
||||
values. It's added to the existing pre-defined colors and can also overwrite
|
||||
existing values.
|
||||
|
||||
> #### Domain-specific NER labels
|
||||
>
|
||||
> Good examples of models with domain-specific label schemes are
|
||||
> [scispaCy](/universe/project/scispacy) and
|
||||
> [Blackstone](/universe/project/blackstone).
|
||||
|
||||
```python
|
||||
### snek.py
|
||||
displacy_colors = {"SNEK": "#3dff74", "HUMAN": "#cfc5ff"}
|
||||
```
|
||||
|
||||
Given the above colors, the entry point can be defined as follows. Entry points
|
||||
need to have a name, so we use the key `colors`. However, the name doesn't
|
||||
matter and whatever is defined in the entry point group will be used.
|
||||
|
||||
```diff
|
||||
### setup.py
|
||||
from setuptools import setup
|
||||
|
||||
setup(
|
||||
name="snek",
|
||||
entry_points={
|
||||
+ "spacy_displacy_colors": ["colors = snek:displacy_colors"]
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
After installing the package, the the custom colors will be used when
|
||||
visualizing text with `displacy`. Whenever the label `SNEK` is assigned, it
|
||||
will be displayed in `#3dff74`.
|
||||
|
||||
import DisplaCyEntSnekHtml from 'images/displacy-ent-snek.html'
|
||||
|
||||
<Iframe title="displaCy visualization of entities" html={DisplaCyEntSnekHtml} height={100} />
|
||||
|
||||
## Saving, loading and distributing models {#models}
|
||||
|
||||
After training your model, you'll usually want to save its state, and load it
|
||||
|
|
Loading…
Reference in New Issue
Block a user