mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-14 03:26:24 +03:00
* Working neural net, but features hacky. Switching to extractor.
This commit is contained in:
parent
8036368d96
commit
7c2f1a673b
|
@ -1,20 +1,26 @@
|
||||||
from thinc.linear.avgtron cimport AveragedPerceptron
|
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||||
|
from thinc.neural.nn cimport NeuralNet
|
||||||
|
from thinc.base cimport Model
|
||||||
from thinc.extra.eg cimport Example
|
from thinc.extra.eg cimport Example
|
||||||
from thinc.structs cimport ExampleC
|
|
||||||
|
|
||||||
from .stateclass cimport StateClass
|
from .stateclass cimport StateClass
|
||||||
from .arc_eager cimport TransitionSystem
|
from .arc_eager cimport TransitionSystem
|
||||||
from ..tokens.doc cimport Doc
|
from ..tokens.doc cimport Doc
|
||||||
from ..structs cimport TokenC
|
from ..structs cimport TokenC
|
||||||
|
from thinc.structs cimport ExampleC
|
||||||
from ._state cimport StateC
|
from ._state cimport StateC
|
||||||
|
|
||||||
|
|
||||||
cdef class ParserModel(AveragedPerceptron):
|
cdef class ParserNeuralNet(NeuralNet):
|
||||||
cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil
|
cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil
|
||||||
|
|
||||||
|
cdef class ParserPerceptron(AveragedPerceptron):
|
||||||
|
cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil
|
||||||
|
|
||||||
|
|
||||||
cdef class Parser:
|
cdef class Parser:
|
||||||
cdef readonly ParserModel model
|
cdef readonly ParserNeuralNet model
|
||||||
cdef readonly TransitionSystem moves
|
cdef readonly TransitionSystem moves
|
||||||
cdef int _projectivize
|
cdef int _projectivize
|
||||||
|
|
||||||
cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) nogil
|
cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) with gil
|
||||||
|
|
|
@ -24,7 +24,7 @@ from murmurhash.mrmr cimport hash64
|
||||||
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
|
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
|
||||||
from thinc.linear.avgtron cimport AveragedPerceptron
|
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||||
from thinc.linalg cimport VecVec
|
from thinc.linalg cimport VecVec
|
||||||
from thinc.structs cimport SparseArrayC
|
from thinc.structs cimport SparseArrayC, ExampleC
|
||||||
from preshed.maps cimport MapStruct
|
from preshed.maps cimport MapStruct
|
||||||
from preshed.maps cimport map_get
|
from preshed.maps cimport map_get
|
||||||
from thinc.structs cimport FeatureC
|
from thinc.structs cimport FeatureC
|
||||||
|
@ -44,6 +44,7 @@ from ..gold cimport GoldParse
|
||||||
from . import _parse_features
|
from . import _parse_features
|
||||||
from ._parse_features cimport CONTEXT_SIZE
|
from ._parse_features cimport CONTEXT_SIZE
|
||||||
from ._parse_features cimport fill_context
|
from ._parse_features cimport fill_context
|
||||||
|
from ._parse_features cimport *
|
||||||
from .stateclass cimport StateClass
|
from .stateclass cimport StateClass
|
||||||
from ._state cimport StateC
|
from ._state cimport StateC
|
||||||
|
|
||||||
|
@ -71,14 +72,70 @@ def ParserFactory(transition_system):
|
||||||
return lambda strings, dir_: Parser(strings, dir_, transition_system)
|
return lambda strings, dir_: Parser(strings, dir_, transition_system)
|
||||||
|
|
||||||
|
|
||||||
cdef class ParserModel(AveragedPerceptron):
|
cdef class ParserPerceptron(AveragedPerceptron):
|
||||||
cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil:
|
cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil:
|
||||||
fill_context(eg.atoms, state)
|
fill_context(eg.atoms, state)
|
||||||
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
|
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
|
||||||
|
|
||||||
|
|
||||||
|
cdef class ParserNeuralNet(NeuralNet):
|
||||||
|
def __init__(self, nr_class, hidden_width=50, depth=2, word_width=50,
|
||||||
|
tag_width=20, dep_width=20, update_step='sgd', eta=0.01, rho=0.0):
|
||||||
|
#input_length = 3 * word_width + 5 * tag_width + 3 * dep_width
|
||||||
|
input_length = 12 * word_width + 7 * dep_width
|
||||||
|
widths = [input_length] + [hidden_width] * depth + [nr_class]
|
||||||
|
#vector_widths = [word_width, tag_width, dep_width]
|
||||||
|
#slots = [0] * 3 + [1] * 5 + [2] * 3
|
||||||
|
vector_widths = [word_width, dep_width]
|
||||||
|
slots = [0] * 12 + [1] * 7
|
||||||
|
NeuralNet.__init__(
|
||||||
|
self,
|
||||||
|
widths,
|
||||||
|
embed=(vector_widths, slots),
|
||||||
|
eta=eta,
|
||||||
|
rho=rho,
|
||||||
|
update_step=update_step)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def nr_feat(self):
|
||||||
|
#return 3+5+3
|
||||||
|
return 12+7
|
||||||
|
|
||||||
|
cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil:
|
||||||
|
fill_context(eg.atoms, state)
|
||||||
|
eg.nr_feat = 12 + 7
|
||||||
|
for j in range(eg.nr_feat):
|
||||||
|
eg.features[j].value = 1.0
|
||||||
|
eg.features[j].i = j
|
||||||
|
#eg.features[0].key = eg.atoms[S0w]
|
||||||
|
#eg.features[1].key = eg.atoms[S1w]
|
||||||
|
#eg.features[2].key = eg.atoms[N0w]
|
||||||
|
|
||||||
|
eg.features[0].key = eg.atoms[S2W]
|
||||||
|
eg.features[1].key = eg.atoms[S1W]
|
||||||
|
eg.features[2].key = eg.atoms[S0lW]
|
||||||
|
eg.features[3].key = eg.atoms[S0l2W]
|
||||||
|
eg.features[4].key = eg.atoms[S0W]
|
||||||
|
eg.features[5].key = eg.atoms[S0r2W]
|
||||||
|
eg.features[6].key = eg.atoms[S0rW]
|
||||||
|
eg.features[7].key = eg.atoms[N0lW]
|
||||||
|
eg.features[8].key = eg.atoms[N0l2W]
|
||||||
|
eg.features[9].key = eg.atoms[N0W]
|
||||||
|
eg.features[10].key = eg.atoms[N1W]
|
||||||
|
eg.features[11].key = eg.atoms[N2W]
|
||||||
|
|
||||||
|
eg.features[12].key = eg.atoms[S2L]
|
||||||
|
eg.features[13].key = eg.atoms[S1L]
|
||||||
|
eg.features[14].key = eg.atoms[S0l2L]
|
||||||
|
eg.features[15].key = eg.atoms[S0lL]
|
||||||
|
eg.features[16].key = eg.atoms[S0L]
|
||||||
|
eg.features[17].key = eg.atoms[S0r2L]
|
||||||
|
eg.features[18].key = eg.atoms[S0rL]
|
||||||
|
|
||||||
|
|
||||||
cdef class Parser:
|
cdef class Parser:
|
||||||
def __init__(self, StringStore strings, transition_system, ParserModel model, int projectivize = 0):
|
def __init__(self, StringStore strings, transition_system, ParserNeuralNet model,
|
||||||
|
int projectivize = 0):
|
||||||
self.moves = transition_system
|
self.moves = transition_system
|
||||||
self.model = model
|
self.model = model
|
||||||
self._projectivize = projectivize
|
self._projectivize = projectivize
|
||||||
|
@ -91,8 +148,12 @@ cdef class Parser:
|
||||||
print >> sys.stderr, "Warning: model path:", model_dir, "is not a directory"
|
print >> sys.stderr, "Warning: model path:", model_dir, "is not a directory"
|
||||||
cfg = Config.read(model_dir, 'config')
|
cfg = Config.read(model_dir, 'config')
|
||||||
moves = transition_system(strings, cfg.labels)
|
moves = transition_system(strings, cfg.labels)
|
||||||
templates = get_templates(cfg.features)
|
model = ParserNeuralNet(moves.n_moves, hidden_width=cfg.hidden_width,
|
||||||
model = ParserModel(templates)
|
depth=cfg.depth, word_width=cfg.word_width,
|
||||||
|
tag_width=cfg.tag_width, dep_width=cfg.dep_width,
|
||||||
|
update_step=cfg.update_step,
|
||||||
|
eta=cfg.eta, rho=cfg.rho)
|
||||||
|
|
||||||
project = cfg.projectivize if hasattr(cfg,'projectivize') else False
|
project = cfg.projectivize if hasattr(cfg,'projectivize') else False
|
||||||
if path.exists(path.join(model_dir, 'model')):
|
if path.exists(path.join(model_dir, 'model')):
|
||||||
model.load(path.join(model_dir, 'model'))
|
model.load(path.join(model_dir, 'model'))
|
||||||
|
@ -156,44 +217,30 @@ cdef class Parser:
|
||||||
self.moves.finalize_doc(doc)
|
self.moves.finalize_doc(doc)
|
||||||
yield doc
|
yield doc
|
||||||
|
|
||||||
cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) nogil:
|
cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) with gil:
|
||||||
cdef ExampleC eg
|
cdef Example py_eg = Example(nr_class=nr_class, nr_atom=CONTEXT_SIZE, nr_feat=nr_feat,
|
||||||
eg.nr_feat = nr_feat
|
widths=self.model.widths)
|
||||||
eg.nr_atom = CONTEXT_SIZE
|
cdef ExampleC* eg = py_eg.c
|
||||||
eg.nr_class = nr_class
|
|
||||||
eg.features = <FeatureC*>calloc(sizeof(FeatureC), nr_feat)
|
|
||||||
eg.atoms = <atom_t*>calloc(sizeof(atom_t), CONTEXT_SIZE)
|
|
||||||
eg.scores = <weight_t*>calloc(sizeof(weight_t), nr_class)
|
|
||||||
eg.is_valid = <int*>calloc(sizeof(int), nr_class)
|
|
||||||
state = new StateC(tokens, length)
|
state = new StateC(tokens, length)
|
||||||
self.moves.initialize_state(state)
|
self.moves.initialize_state(state)
|
||||||
cdef int i
|
cdef int i
|
||||||
while not state.is_final():
|
while not state.is_final():
|
||||||
self.model.set_featuresC(&eg, state)
|
self.model.set_featuresC(eg, state)
|
||||||
self.moves.set_valid(eg.is_valid, state)
|
self.moves.set_valid(eg.is_valid, state)
|
||||||
self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat)
|
self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat, 1)
|
||||||
|
|
||||||
guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class)
|
guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class)
|
||||||
|
|
||||||
action = self.moves.c[guess]
|
action = self.moves.c[guess]
|
||||||
if not eg.is_valid[guess]:
|
if not eg.is_valid[guess]:
|
||||||
# with gil:
|
|
||||||
# move_name = self.moves.move_name(action.move, action.label)
|
|
||||||
# print 'invalid action:', move_name
|
|
||||||
return 1
|
return 1
|
||||||
|
|
||||||
action.do(state, action.label)
|
action.do(state, action.label)
|
||||||
memset(eg.scores, 0, sizeof(eg.scores[0]) * eg.nr_class)
|
py_eg.reset()
|
||||||
for i in range(eg.nr_class):
|
|
||||||
eg.is_valid[i] = 1
|
|
||||||
self.moves.finalize_state(state)
|
self.moves.finalize_state(state)
|
||||||
for i in range(length):
|
for i in range(length):
|
||||||
tokens[i] = state._sent[i]
|
tokens[i] = state._sent[i]
|
||||||
del state
|
del state
|
||||||
free(eg.features)
|
|
||||||
free(eg.atoms)
|
|
||||||
free(eg.scores)
|
|
||||||
free(eg.is_valid)
|
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
def train(self, Doc tokens, GoldParse gold):
|
def train(self, Doc tokens, GoldParse gold):
|
||||||
|
@ -203,23 +250,22 @@ cdef class Parser:
|
||||||
cdef Pool mem = Pool()
|
cdef Pool mem = Pool()
|
||||||
cdef Example eg = Example(
|
cdef Example eg = Example(
|
||||||
nr_class=self.moves.n_moves,
|
nr_class=self.moves.n_moves,
|
||||||
|
widths=self.model.widths,
|
||||||
nr_atom=CONTEXT_SIZE,
|
nr_atom=CONTEXT_SIZE,
|
||||||
nr_feat=self.model.nr_feat)
|
nr_feat=self.model.nr_feat)
|
||||||
cdef weight_t loss = 0
|
cdef weight_t loss = 0
|
||||||
cdef Transition action
|
cdef Transition action
|
||||||
while not stcls.is_final():
|
while not stcls.is_final():
|
||||||
self.model.set_featuresC(&eg.c, stcls.c)
|
self.model.set_featuresC(eg.c, stcls.c)
|
||||||
self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
|
self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
|
||||||
self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat)
|
|
||||||
self.model.updateC(&eg.c)
|
# Sets eg.c.scores, which Example uses to calculate eg.guess
|
||||||
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
|
self.model.updateC(eg.c)
|
||||||
|
|
||||||
action = self.moves.c[eg.guess]
|
action = self.moves.c[eg.guess]
|
||||||
action.do(stcls.c, action.label)
|
action.do(stcls.c, action.label)
|
||||||
loss += eg.costs[eg.guess]
|
loss += eg.loss
|
||||||
eg.fill_scores(0, eg.nr_class)
|
eg.reset()
|
||||||
eg.fill_costs(0, eg.nr_class)
|
|
||||||
eg.fill_is_valid(0, eg.nr_class)
|
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
def step_through(self, Doc doc):
|
def step_through(self, Doc doc):
|
||||||
|
@ -280,10 +326,10 @@ cdef class StepwiseState:
|
||||||
|
|
||||||
def predict(self):
|
def predict(self):
|
||||||
self.eg.reset()
|
self.eg.reset()
|
||||||
self.parser.model.set_featuresC(&self.eg.c, self.stcls.c)
|
self.parser.model.set_featuresC(self.eg.c, self.stcls.c)
|
||||||
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
|
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
|
||||||
self.parser.model.set_scoresC(self.eg.c.scores,
|
self.parser.model.set_scoresC(self.eg.c.scores,
|
||||||
self.eg.c.features, self.eg.c.nr_feat)
|
self.eg.c.features, self.eg.c.nr_feat, 1)
|
||||||
|
|
||||||
cdef Transition action = self.parser.moves.c[self.eg.guess]
|
cdef Transition action = self.parser.moves.c[self.eg.guess]
|
||||||
return self.parser.moves.move_name(action.move, action.label)
|
return self.parser.moves.move_name(action.move, action.label)
|
||||||
|
|
|
@ -202,9 +202,9 @@ cdef class Tagger:
|
||||||
nr_feat=self.model.nr_feat)
|
nr_feat=self.model.nr_feat)
|
||||||
for i in range(tokens.length):
|
for i in range(tokens.length):
|
||||||
if tokens.c[i].pos == 0:
|
if tokens.c[i].pos == 0:
|
||||||
self.model.set_featuresC(&eg.c, tokens.c, i)
|
self.model.set_featuresC(eg.c, tokens.c, i)
|
||||||
self.model.set_scoresC(eg.c.scores,
|
self.model.set_scoresC(eg.c.scores,
|
||||||
eg.c.features, eg.c.nr_feat)
|
eg.c.features, eg.c.nr_feat, 1)
|
||||||
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
|
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
|
||||||
self.vocab.morphology.assign_tag(&tokens.c[i], guess)
|
self.vocab.morphology.assign_tag(&tokens.c[i], guess)
|
||||||
eg.fill_scores(0, eg.c.nr_class)
|
eg.fill_scores(0, eg.c.nr_class)
|
||||||
|
@ -231,11 +231,11 @@ cdef class Tagger:
|
||||||
nr_class=self.vocab.morphology.n_tags,
|
nr_class=self.vocab.morphology.n_tags,
|
||||||
nr_feat=self.model.nr_feat)
|
nr_feat=self.model.nr_feat)
|
||||||
for i in range(tokens.length):
|
for i in range(tokens.length):
|
||||||
self.model.set_featuresC(&eg.c, tokens.c, i)
|
self.model.set_featuresC(eg.c, tokens.c, i)
|
||||||
eg.costs = [ 1 if golds[i] not in (c, -1) else 0 for c in xrange(eg.nr_class) ]
|
eg.costs = [ 1 if golds[i] not in (c, -1) else 0 for c in xrange(eg.nr_class) ]
|
||||||
self.model.set_scoresC(eg.c.scores,
|
self.model.set_scoresC(eg.c.scores,
|
||||||
eg.c.features, eg.c.nr_feat)
|
eg.c.features, eg.c.nr_feat, 1)
|
||||||
self.model.updateC(&eg.c)
|
self.model.updateC(eg.c)
|
||||||
|
|
||||||
self.vocab.morphology.assign_tag(&tokens.c[i], eg.guess)
|
self.vocab.morphology.assign_tag(&tokens.c[i], eg.guess)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user