mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Working neural net, but features hacky. Switching to extractor.
This commit is contained in:
		
							parent
							
								
									8036368d96
								
							
						
					
					
						commit
						7c2f1a673b
					
				| 
						 | 
					@ -1,20 +1,26 @@
 | 
				
			||||||
from thinc.linear.avgtron cimport AveragedPerceptron
 | 
					from thinc.linear.avgtron cimport AveragedPerceptron
 | 
				
			||||||
 | 
					from thinc.neural.nn cimport NeuralNet
 | 
				
			||||||
 | 
					from thinc.base cimport Model
 | 
				
			||||||
from thinc.extra.eg cimport Example
 | 
					from thinc.extra.eg cimport Example
 | 
				
			||||||
from thinc.structs cimport ExampleC
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
from .stateclass cimport StateClass
 | 
					from .stateclass cimport StateClass
 | 
				
			||||||
from .arc_eager cimport TransitionSystem
 | 
					from .arc_eager cimport TransitionSystem
 | 
				
			||||||
from ..tokens.doc cimport Doc
 | 
					from ..tokens.doc cimport Doc
 | 
				
			||||||
from ..structs cimport TokenC
 | 
					from ..structs cimport TokenC
 | 
				
			||||||
 | 
					from thinc.structs cimport ExampleC
 | 
				
			||||||
from ._state cimport StateC
 | 
					from ._state cimport StateC
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
cdef class ParserModel(AveragedPerceptron):
 | 
					cdef class ParserNeuralNet(NeuralNet):
 | 
				
			||||||
    cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil
 | 
					    cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					cdef class ParserPerceptron(AveragedPerceptron):
 | 
				
			||||||
 | 
					    cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
cdef class Parser:
 | 
					cdef class Parser:
 | 
				
			||||||
    cdef readonly ParserModel model
 | 
					    cdef readonly ParserNeuralNet model
 | 
				
			||||||
    cdef readonly TransitionSystem moves
 | 
					    cdef readonly TransitionSystem moves
 | 
				
			||||||
    cdef int _projectivize
 | 
					    cdef int _projectivize
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) nogil
 | 
					    cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) with gil
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -24,7 +24,7 @@ from murmurhash.mrmr cimport hash64
 | 
				
			||||||
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
 | 
					from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
 | 
				
			||||||
from thinc.linear.avgtron cimport AveragedPerceptron
 | 
					from thinc.linear.avgtron cimport AveragedPerceptron
 | 
				
			||||||
from thinc.linalg cimport VecVec
 | 
					from thinc.linalg cimport VecVec
 | 
				
			||||||
from thinc.structs cimport SparseArrayC
 | 
					from thinc.structs cimport SparseArrayC, ExampleC
 | 
				
			||||||
from preshed.maps cimport MapStruct
 | 
					from preshed.maps cimport MapStruct
 | 
				
			||||||
from preshed.maps cimport map_get
 | 
					from preshed.maps cimport map_get
 | 
				
			||||||
from thinc.structs cimport FeatureC
 | 
					from thinc.structs cimport FeatureC
 | 
				
			||||||
| 
						 | 
					@ -44,6 +44,7 @@ from ..gold cimport GoldParse
 | 
				
			||||||
from . import _parse_features
 | 
					from . import _parse_features
 | 
				
			||||||
from ._parse_features cimport CONTEXT_SIZE
 | 
					from ._parse_features cimport CONTEXT_SIZE
 | 
				
			||||||
from ._parse_features cimport fill_context
 | 
					from ._parse_features cimport fill_context
 | 
				
			||||||
 | 
					from ._parse_features cimport *
 | 
				
			||||||
from .stateclass cimport StateClass
 | 
					from .stateclass cimport StateClass
 | 
				
			||||||
from ._state cimport StateC
 | 
					from ._state cimport StateC
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -71,14 +72,70 @@ def ParserFactory(transition_system):
 | 
				
			||||||
    return lambda strings, dir_: Parser(strings, dir_, transition_system)
 | 
					    return lambda strings, dir_: Parser(strings, dir_, transition_system)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
cdef class ParserModel(AveragedPerceptron):
 | 
					cdef class ParserPerceptron(AveragedPerceptron):
 | 
				
			||||||
    cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil: 
 | 
					    cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil: 
 | 
				
			||||||
        fill_context(eg.atoms, state)
 | 
					        fill_context(eg.atoms, state)
 | 
				
			||||||
        eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
 | 
					        eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					cdef class ParserNeuralNet(NeuralNet):
 | 
				
			||||||
 | 
					    def __init__(self, nr_class, hidden_width=50, depth=2, word_width=50,
 | 
				
			||||||
 | 
					            tag_width=20, dep_width=20, update_step='sgd', eta=0.01, rho=0.0):
 | 
				
			||||||
 | 
					        #input_length = 3 * word_width + 5 * tag_width + 3 * dep_width
 | 
				
			||||||
 | 
					        input_length = 12 * word_width + 7 * dep_width
 | 
				
			||||||
 | 
					        widths = [input_length] + [hidden_width] * depth + [nr_class]
 | 
				
			||||||
 | 
					        #vector_widths = [word_width, tag_width, dep_width]
 | 
				
			||||||
 | 
					        #slots = [0] * 3 + [1] * 5 + [2] * 3
 | 
				
			||||||
 | 
					        vector_widths = [word_width, dep_width]
 | 
				
			||||||
 | 
					        slots = [0] * 12 + [1] * 7
 | 
				
			||||||
 | 
					        NeuralNet.__init__(
 | 
				
			||||||
 | 
					            self,
 | 
				
			||||||
 | 
					            widths,
 | 
				
			||||||
 | 
					            embed=(vector_widths, slots),
 | 
				
			||||||
 | 
					            eta=eta,
 | 
				
			||||||
 | 
					            rho=rho,
 | 
				
			||||||
 | 
					            update_step=update_step)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @property
 | 
				
			||||||
 | 
					    def nr_feat(self):
 | 
				
			||||||
 | 
					        #return 3+5+3
 | 
				
			||||||
 | 
					        return 12+7
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil: 
 | 
				
			||||||
 | 
					        fill_context(eg.atoms, state)
 | 
				
			||||||
 | 
					        eg.nr_feat = 12 + 7
 | 
				
			||||||
 | 
					        for j in range(eg.nr_feat):
 | 
				
			||||||
 | 
					            eg.features[j].value = 1.0
 | 
				
			||||||
 | 
					            eg.features[j].i = j
 | 
				
			||||||
 | 
					        #eg.features[0].key = eg.atoms[S0w]
 | 
				
			||||||
 | 
					        #eg.features[1].key = eg.atoms[S1w]
 | 
				
			||||||
 | 
					        #eg.features[2].key = eg.atoms[N0w]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        eg.features[0].key = eg.atoms[S2W]
 | 
				
			||||||
 | 
					        eg.features[1].key = eg.atoms[S1W]
 | 
				
			||||||
 | 
					        eg.features[2].key = eg.atoms[S0lW]
 | 
				
			||||||
 | 
					        eg.features[3].key = eg.atoms[S0l2W]
 | 
				
			||||||
 | 
					        eg.features[4].key = eg.atoms[S0W]
 | 
				
			||||||
 | 
					        eg.features[5].key = eg.atoms[S0r2W]
 | 
				
			||||||
 | 
					        eg.features[6].key = eg.atoms[S0rW]
 | 
				
			||||||
 | 
					        eg.features[7].key = eg.atoms[N0lW]
 | 
				
			||||||
 | 
					        eg.features[8].key = eg.atoms[N0l2W]
 | 
				
			||||||
 | 
					        eg.features[9].key = eg.atoms[N0W]
 | 
				
			||||||
 | 
					        eg.features[10].key = eg.atoms[N1W]
 | 
				
			||||||
 | 
					        eg.features[11].key = eg.atoms[N2W]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        eg.features[12].key = eg.atoms[S2L]
 | 
				
			||||||
 | 
					        eg.features[13].key = eg.atoms[S1L]
 | 
				
			||||||
 | 
					        eg.features[14].key = eg.atoms[S0l2L]
 | 
				
			||||||
 | 
					        eg.features[15].key = eg.atoms[S0lL]
 | 
				
			||||||
 | 
					        eg.features[16].key = eg.atoms[S0L]
 | 
				
			||||||
 | 
					        eg.features[17].key = eg.atoms[S0r2L]
 | 
				
			||||||
 | 
					        eg.features[18].key = eg.atoms[S0rL]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
cdef class Parser:
 | 
					cdef class Parser:
 | 
				
			||||||
    def __init__(self, StringStore strings, transition_system, ParserModel model, int projectivize = 0):
 | 
					    def __init__(self, StringStore strings, transition_system, ParserNeuralNet model,
 | 
				
			||||||
 | 
					            int projectivize = 0):
 | 
				
			||||||
        self.moves = transition_system
 | 
					        self.moves = transition_system
 | 
				
			||||||
        self.model = model
 | 
					        self.model = model
 | 
				
			||||||
        self._projectivize = projectivize
 | 
					        self._projectivize = projectivize
 | 
				
			||||||
| 
						 | 
					@ -91,8 +148,12 @@ cdef class Parser:
 | 
				
			||||||
            print >> sys.stderr, "Warning: model path:", model_dir, "is not a directory"
 | 
					            print >> sys.stderr, "Warning: model path:", model_dir, "is not a directory"
 | 
				
			||||||
        cfg = Config.read(model_dir, 'config')
 | 
					        cfg = Config.read(model_dir, 'config')
 | 
				
			||||||
        moves = transition_system(strings, cfg.labels)
 | 
					        moves = transition_system(strings, cfg.labels)
 | 
				
			||||||
        templates = get_templates(cfg.features)
 | 
					        model = ParserNeuralNet(moves.n_moves, hidden_width=cfg.hidden_width,
 | 
				
			||||||
        model = ParserModel(templates)
 | 
					                                depth=cfg.depth, word_width=cfg.word_width,
 | 
				
			||||||
 | 
					                                tag_width=cfg.tag_width, dep_width=cfg.dep_width,
 | 
				
			||||||
 | 
					                                update_step=cfg.update_step,
 | 
				
			||||||
 | 
					                                eta=cfg.eta, rho=cfg.rho)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        project = cfg.projectivize if hasattr(cfg,'projectivize') else False
 | 
					        project = cfg.projectivize if hasattr(cfg,'projectivize') else False
 | 
				
			||||||
        if path.exists(path.join(model_dir, 'model')):
 | 
					        if path.exists(path.join(model_dir, 'model')):
 | 
				
			||||||
            model.load(path.join(model_dir, 'model'))
 | 
					            model.load(path.join(model_dir, 'model'))
 | 
				
			||||||
| 
						 | 
					@ -156,44 +217,30 @@ cdef class Parser:
 | 
				
			||||||
            self.moves.finalize_doc(doc)
 | 
					            self.moves.finalize_doc(doc)
 | 
				
			||||||
            yield doc
 | 
					            yield doc
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) nogil:
 | 
					    cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) with gil:
 | 
				
			||||||
        cdef ExampleC eg
 | 
					        cdef Example py_eg = Example(nr_class=nr_class, nr_atom=CONTEXT_SIZE, nr_feat=nr_feat,
 | 
				
			||||||
        eg.nr_feat = nr_feat
 | 
					                                  widths=self.model.widths)
 | 
				
			||||||
        eg.nr_atom = CONTEXT_SIZE
 | 
					        cdef ExampleC* eg = py_eg.c
 | 
				
			||||||
        eg.nr_class = nr_class
 | 
					 | 
				
			||||||
        eg.features = <FeatureC*>calloc(sizeof(FeatureC), nr_feat)
 | 
					 | 
				
			||||||
        eg.atoms = <atom_t*>calloc(sizeof(atom_t), CONTEXT_SIZE)
 | 
					 | 
				
			||||||
        eg.scores = <weight_t*>calloc(sizeof(weight_t), nr_class)
 | 
					 | 
				
			||||||
        eg.is_valid = <int*>calloc(sizeof(int), nr_class)
 | 
					 | 
				
			||||||
        state = new StateC(tokens, length)
 | 
					        state = new StateC(tokens, length)
 | 
				
			||||||
        self.moves.initialize_state(state)
 | 
					        self.moves.initialize_state(state)
 | 
				
			||||||
        cdef int i
 | 
					        cdef int i
 | 
				
			||||||
        while not state.is_final():
 | 
					        while not state.is_final():
 | 
				
			||||||
            self.model.set_featuresC(&eg, state)
 | 
					            self.model.set_featuresC(eg, state)
 | 
				
			||||||
            self.moves.set_valid(eg.is_valid, state)
 | 
					            self.moves.set_valid(eg.is_valid, state)
 | 
				
			||||||
            self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat)
 | 
					            self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat, 1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class)
 | 
					            guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            action = self.moves.c[guess]
 | 
					            action = self.moves.c[guess]
 | 
				
			||||||
            if not eg.is_valid[guess]:
 | 
					            if not eg.is_valid[guess]:
 | 
				
			||||||
                # with gil:
 | 
					 | 
				
			||||||
                #     move_name = self.moves.move_name(action.move, action.label)
 | 
					 | 
				
			||||||
                #     print 'invalid action:', move_name
 | 
					 | 
				
			||||||
                return 1
 | 
					                return 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            action.do(state, action.label)
 | 
					            action.do(state, action.label)
 | 
				
			||||||
            memset(eg.scores, 0, sizeof(eg.scores[0]) * eg.nr_class)
 | 
					            py_eg.reset()
 | 
				
			||||||
            for i in range(eg.nr_class):
 | 
					 | 
				
			||||||
                eg.is_valid[i] = 1
 | 
					 | 
				
			||||||
        self.moves.finalize_state(state)
 | 
					        self.moves.finalize_state(state)
 | 
				
			||||||
        for i in range(length):
 | 
					        for i in range(length):
 | 
				
			||||||
            tokens[i] = state._sent[i]
 | 
					            tokens[i] = state._sent[i]
 | 
				
			||||||
        del state
 | 
					        del state
 | 
				
			||||||
        free(eg.features)
 | 
					 | 
				
			||||||
        free(eg.atoms)
 | 
					 | 
				
			||||||
        free(eg.scores)
 | 
					 | 
				
			||||||
        free(eg.is_valid)
 | 
					 | 
				
			||||||
        return 0
 | 
					        return 0
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
    def train(self, Doc tokens, GoldParse gold):
 | 
					    def train(self, Doc tokens, GoldParse gold):
 | 
				
			||||||
| 
						 | 
					@ -203,23 +250,22 @@ cdef class Parser:
 | 
				
			||||||
        cdef Pool mem = Pool()
 | 
					        cdef Pool mem = Pool()
 | 
				
			||||||
        cdef Example eg = Example(
 | 
					        cdef Example eg = Example(
 | 
				
			||||||
                nr_class=self.moves.n_moves,
 | 
					                nr_class=self.moves.n_moves,
 | 
				
			||||||
 | 
					                widths=self.model.widths,
 | 
				
			||||||
                nr_atom=CONTEXT_SIZE,
 | 
					                nr_atom=CONTEXT_SIZE,
 | 
				
			||||||
                nr_feat=self.model.nr_feat)
 | 
					                nr_feat=self.model.nr_feat)
 | 
				
			||||||
        cdef weight_t loss = 0
 | 
					        cdef weight_t loss = 0
 | 
				
			||||||
        cdef Transition action
 | 
					        cdef Transition action
 | 
				
			||||||
        while not stcls.is_final():
 | 
					        while not stcls.is_final():
 | 
				
			||||||
            self.model.set_featuresC(&eg.c, stcls.c)
 | 
					            self.model.set_featuresC(eg.c, stcls.c)
 | 
				
			||||||
            self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
 | 
					            self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
 | 
				
			||||||
            self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat)
 | 
					            
 | 
				
			||||||
            self.model.updateC(&eg.c)
 | 
					            # Sets eg.c.scores, which Example uses to calculate eg.guess
 | 
				
			||||||
            guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
 | 
					            self.model.updateC(eg.c)
 | 
				
			||||||
            
 | 
					            
 | 
				
			||||||
            action = self.moves.c[eg.guess]
 | 
					            action = self.moves.c[eg.guess]
 | 
				
			||||||
            action.do(stcls.c, action.label)
 | 
					            action.do(stcls.c, action.label)
 | 
				
			||||||
            loss += eg.costs[eg.guess]
 | 
					            loss += eg.loss
 | 
				
			||||||
            eg.fill_scores(0, eg.nr_class)
 | 
					            eg.reset()
 | 
				
			||||||
            eg.fill_costs(0, eg.nr_class)
 | 
					 | 
				
			||||||
            eg.fill_is_valid(0, eg.nr_class)
 | 
					 | 
				
			||||||
        return loss
 | 
					        return loss
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def step_through(self, Doc doc):
 | 
					    def step_through(self, Doc doc):
 | 
				
			||||||
| 
						 | 
					@ -280,10 +326,10 @@ cdef class StepwiseState:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def predict(self):
 | 
					    def predict(self):
 | 
				
			||||||
        self.eg.reset()
 | 
					        self.eg.reset()
 | 
				
			||||||
        self.parser.model.set_featuresC(&self.eg.c, self.stcls.c)
 | 
					        self.parser.model.set_featuresC(self.eg.c, self.stcls.c)
 | 
				
			||||||
        self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
 | 
					        self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
 | 
				
			||||||
        self.parser.model.set_scoresC(self.eg.c.scores,
 | 
					        self.parser.model.set_scoresC(self.eg.c.scores,
 | 
				
			||||||
            self.eg.c.features, self.eg.c.nr_feat)
 | 
					            self.eg.c.features, self.eg.c.nr_feat, 1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        cdef Transition action = self.parser.moves.c[self.eg.guess]
 | 
					        cdef Transition action = self.parser.moves.c[self.eg.guess]
 | 
				
			||||||
        return self.parser.moves.move_name(action.move, action.label)
 | 
					        return self.parser.moves.move_name(action.move, action.label)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -202,9 +202,9 @@ cdef class Tagger:
 | 
				
			||||||
                                  nr_feat=self.model.nr_feat)
 | 
					                                  nr_feat=self.model.nr_feat)
 | 
				
			||||||
        for i in range(tokens.length):
 | 
					        for i in range(tokens.length):
 | 
				
			||||||
            if tokens.c[i].pos == 0:                
 | 
					            if tokens.c[i].pos == 0:                
 | 
				
			||||||
                self.model.set_featuresC(&eg.c, tokens.c, i)
 | 
					                self.model.set_featuresC(eg.c, tokens.c, i)
 | 
				
			||||||
                self.model.set_scoresC(eg.c.scores,
 | 
					                self.model.set_scoresC(eg.c.scores,
 | 
				
			||||||
                    eg.c.features, eg.c.nr_feat)
 | 
					                    eg.c.features, eg.c.nr_feat, 1)
 | 
				
			||||||
                guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
 | 
					                guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
 | 
				
			||||||
                self.vocab.morphology.assign_tag(&tokens.c[i], guess)
 | 
					                self.vocab.morphology.assign_tag(&tokens.c[i], guess)
 | 
				
			||||||
                eg.fill_scores(0, eg.c.nr_class)
 | 
					                eg.fill_scores(0, eg.c.nr_class)
 | 
				
			||||||
| 
						 | 
					@ -231,11 +231,11 @@ cdef class Tagger:
 | 
				
			||||||
            nr_class=self.vocab.morphology.n_tags,
 | 
					            nr_class=self.vocab.morphology.n_tags,
 | 
				
			||||||
            nr_feat=self.model.nr_feat)
 | 
					            nr_feat=self.model.nr_feat)
 | 
				
			||||||
        for i in range(tokens.length):
 | 
					        for i in range(tokens.length):
 | 
				
			||||||
            self.model.set_featuresC(&eg.c, tokens.c, i)
 | 
					            self.model.set_featuresC(eg.c, tokens.c, i)
 | 
				
			||||||
            eg.costs = [ 1 if golds[i] not in (c, -1) else 0 for c in xrange(eg.nr_class) ]
 | 
					            eg.costs = [ 1 if golds[i] not in (c, -1) else 0 for c in xrange(eg.nr_class) ]
 | 
				
			||||||
            self.model.set_scoresC(eg.c.scores,
 | 
					            self.model.set_scoresC(eg.c.scores,
 | 
				
			||||||
                eg.c.features, eg.c.nr_feat)
 | 
					                eg.c.features, eg.c.nr_feat, 1)
 | 
				
			||||||
            self.model.updateC(&eg.c)
 | 
					            self.model.updateC(eg.c)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            self.vocab.morphology.assign_tag(&tokens.c[i], eg.guess)
 | 
					            self.vocab.morphology.assign_tag(&tokens.c[i], eg.guess)
 | 
				
			||||||
            
 | 
					            
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user