mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	Merge pull request #6227 from adrianeboyd/chore/update-3.0.0a36-from-master
This commit is contained in:
		
						commit
						7c52def5da
					
				
							
								
								
									
										106
									
								
								.github/contributors/delzac.md
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										106
									
								
								.github/contributors/delzac.md
									
									
									
									
										vendored
									
									
										Normal file
									
								
							|  | @ -0,0 +1,106 @@ | ||||||
|  | # spaCy contributor agreement | ||||||
|  | 
 | ||||||
|  | This spaCy Contributor Agreement (**"SCA"**) is based on the | ||||||
|  | [Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf). | ||||||
|  | The SCA applies to any contribution that you make to any product or project | ||||||
|  | managed by us (the **"project"**), and sets out the intellectual property rights | ||||||
|  | you grant to us in the contributed materials. The term **"us"** shall mean | ||||||
|  | [ExplosionAI GmbH](https://explosion.ai/legal). The term | ||||||
|  | **"you"** shall mean the person or entity identified below. | ||||||
|  | 
 | ||||||
|  | If you agree to be bound by these terms, fill in the information requested | ||||||
|  | below and include the filled-in version with your first pull request, under the | ||||||
|  | folder [`.github/contributors/`](/.github/contributors/). The name of the file | ||||||
|  | should be your GitHub username, with the extension `.md`. For example, the user | ||||||
|  | example_user would create the file `.github/contributors/example_user.md`. | ||||||
|  | 
 | ||||||
|  | Read this agreement carefully before signing. These terms and conditions | ||||||
|  | constitute a binding legal agreement. | ||||||
|  | 
 | ||||||
|  | ## Contributor Agreement | ||||||
|  | 
 | ||||||
|  | 1. The term "contribution" or "contributed materials" means any source code, | ||||||
|  | object code, patch, tool, sample, graphic, specification, manual, | ||||||
|  | documentation, or any other material posted or submitted by you to the project. | ||||||
|  | 
 | ||||||
|  | 2. With respect to any worldwide copyrights, or copyright applications and | ||||||
|  | registrations, in your contribution: | ||||||
|  | 
 | ||||||
|  |     * you hereby assign to us joint ownership, and to the extent that such | ||||||
|  |     assignment is or becomes invalid, ineffective or unenforceable, you hereby | ||||||
|  |     grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge, | ||||||
|  |     royalty-free, unrestricted license to exercise all rights under those | ||||||
|  |     copyrights. This includes, at our option, the right to sublicense these same | ||||||
|  |     rights to third parties through multiple levels of sublicensees or other | ||||||
|  |     licensing arrangements; | ||||||
|  | 
 | ||||||
|  |     * you agree that each of us can do all things in relation to your | ||||||
|  |     contribution as if each of us were the sole owners, and if one of us makes | ||||||
|  |     a derivative work of your contribution, the one who makes the derivative | ||||||
|  |     work (or has it made will be the sole owner of that derivative work; | ||||||
|  | 
 | ||||||
|  |     * you agree that you will not assert any moral rights in your contribution | ||||||
|  |     against us, our licensees or transferees; | ||||||
|  | 
 | ||||||
|  |     * you agree that we may register a copyright in your contribution and | ||||||
|  |     exercise all ownership rights associated with it; and | ||||||
|  | 
 | ||||||
|  |     * you agree that neither of us has any duty to consult with, obtain the | ||||||
|  |     consent of, pay or render an accounting to the other for any use or | ||||||
|  |     distribution of your contribution. | ||||||
|  | 
 | ||||||
|  | 3. With respect to any patents you own, or that you can license without payment | ||||||
|  | to any third party, you hereby grant to us a perpetual, irrevocable, | ||||||
|  | non-exclusive, worldwide, no-charge, royalty-free license to: | ||||||
|  | 
 | ||||||
|  |     * make, have made, use, sell, offer to sell, import, and otherwise transfer | ||||||
|  |     your contribution in whole or in part, alone or in combination with or | ||||||
|  |     included in any product, work or materials arising out of the project to | ||||||
|  |     which your contribution was submitted, and | ||||||
|  | 
 | ||||||
|  |     * at our option, to sublicense these same rights to third parties through | ||||||
|  |     multiple levels of sublicensees or other licensing arrangements. | ||||||
|  | 
 | ||||||
|  | 4. Except as set out above, you keep all right, title, and interest in your | ||||||
|  | contribution. The rights that you grant to us under these terms are effective | ||||||
|  | on the date you first submitted a contribution to us, even if your submission | ||||||
|  | took place before the date you sign these terms. | ||||||
|  | 
 | ||||||
|  | 5. You covenant, represent, warrant and agree that: | ||||||
|  | 
 | ||||||
|  |     * Each contribution that you submit is and shall be an original work of | ||||||
|  |     authorship and you can legally grant the rights set out in this SCA; | ||||||
|  | 
 | ||||||
|  |     * to the best of your knowledge, each contribution will not violate any | ||||||
|  |     third party's copyrights, trademarks, patents, or other intellectual | ||||||
|  |     property rights; and | ||||||
|  | 
 | ||||||
|  |     * each contribution shall be in compliance with U.S. export control laws and | ||||||
|  |     other applicable export and import laws. You agree to notify us if you | ||||||
|  |     become aware of any circumstance which would make any of the foregoing | ||||||
|  |     representations inaccurate in any respect. We may publicly disclose your | ||||||
|  |     participation in the project, including the fact that you have signed the SCA. | ||||||
|  | 
 | ||||||
|  | 6. This SCA is governed by the laws of the State of California and applicable | ||||||
|  | U.S. Federal law. Any choice of law rules will not apply. | ||||||
|  | 
 | ||||||
|  | 7. Please place an “x” on one of the applicable statement below. Please do NOT | ||||||
|  | mark both statements: | ||||||
|  | 
 | ||||||
|  |     * [x] I am signing on behalf of myself as an individual and no other person | ||||||
|  |     or entity, including my employer, has or will have rights with respect to my | ||||||
|  |     contributions. | ||||||
|  | 
 | ||||||
|  |     * [ ] I am signing on behalf of my employer or a legal entity and I have the | ||||||
|  |     actual authority to contractually bind that entity. | ||||||
|  | 
 | ||||||
|  | ## Contributor Details | ||||||
|  | 
 | ||||||
|  | | Field                          | Entry                | | ||||||
|  | |------------------------------- | -------------------- | | ||||||
|  | | Name                           |  Matthew Chin        | | ||||||
|  | | Company name (if applicable)   |                      | | ||||||
|  | | Title or role (if applicable)  |                      | | ||||||
|  | | Date                           | 2020-09-22           | | ||||||
|  | | GitHub username                | delzac               | | ||||||
|  | | Website (optional)             |                      | | ||||||
							
								
								
									
										106
									
								
								.github/contributors/florijanstamenkovic.md
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										106
									
								
								.github/contributors/florijanstamenkovic.md
									
									
									
									
										vendored
									
									
										Normal file
									
								
							|  | @ -0,0 +1,106 @@ | ||||||
|  | # spaCy contributor agreement | ||||||
|  | 
 | ||||||
|  | This spaCy Contributor Agreement (**"SCA"**) is based on the | ||||||
|  | [Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf). | ||||||
|  | The SCA applies to any contribution that you make to any product or project | ||||||
|  | managed by us (the **"project"**), and sets out the intellectual property rights | ||||||
|  | you grant to us in the contributed materials. The term **"us"** shall mean | ||||||
|  | [ExplosionAI GmbH](https://explosion.ai/legal). The term | ||||||
|  | **"you"** shall mean the person or entity identified below. | ||||||
|  | 
 | ||||||
|  | If you agree to be bound by these terms, fill in the information requested | ||||||
|  | below and include the filled-in version with your first pull request, under the | ||||||
|  | folder [`.github/contributors/`](/.github/contributors/). The name of the file | ||||||
|  | should be your GitHub username, with the extension `.md`. For example, the user | ||||||
|  | example_user would create the file `.github/contributors/example_user.md`. | ||||||
|  | 
 | ||||||
|  | Read this agreement carefully before signing. These terms and conditions | ||||||
|  | constitute a binding legal agreement. | ||||||
|  | 
 | ||||||
|  | ## Contributor Agreement | ||||||
|  | 
 | ||||||
|  | 1. The term "contribution" or "contributed materials" means any source code, | ||||||
|  | object code, patch, tool, sample, graphic, specification, manual, | ||||||
|  | documentation, or any other material posted or submitted by you to the project. | ||||||
|  | 
 | ||||||
|  | 2. With respect to any worldwide copyrights, or copyright applications and | ||||||
|  | registrations, in your contribution: | ||||||
|  | 
 | ||||||
|  |     * you hereby assign to us joint ownership, and to the extent that such | ||||||
|  |     assignment is or becomes invalid, ineffective or unenforceable, you hereby | ||||||
|  |     grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge, | ||||||
|  |     royalty-free, unrestricted license to exercise all rights under those | ||||||
|  |     copyrights. This includes, at our option, the right to sublicense these same | ||||||
|  |     rights to third parties through multiple levels of sublicensees or other | ||||||
|  |     licensing arrangements; | ||||||
|  | 
 | ||||||
|  |     * you agree that each of us can do all things in relation to your | ||||||
|  |     contribution as if each of us were the sole owners, and if one of us makes | ||||||
|  |     a derivative work of your contribution, the one who makes the derivative | ||||||
|  |     work (or has it made will be the sole owner of that derivative work; | ||||||
|  | 
 | ||||||
|  |     * you agree that you will not assert any moral rights in your contribution | ||||||
|  |     against us, our licensees or transferees; | ||||||
|  | 
 | ||||||
|  |     * you agree that we may register a copyright in your contribution and | ||||||
|  |     exercise all ownership rights associated with it; and | ||||||
|  | 
 | ||||||
|  |     * you agree that neither of us has any duty to consult with, obtain the | ||||||
|  |     consent of, pay or render an accounting to the other for any use or | ||||||
|  |     distribution of your contribution. | ||||||
|  | 
 | ||||||
|  | 3. With respect to any patents you own, or that you can license without payment | ||||||
|  | to any third party, you hereby grant to us a perpetual, irrevocable, | ||||||
|  | non-exclusive, worldwide, no-charge, royalty-free license to: | ||||||
|  | 
 | ||||||
|  |     * make, have made, use, sell, offer to sell, import, and otherwise transfer | ||||||
|  |     your contribution in whole or in part, alone or in combination with or | ||||||
|  |     included in any product, work or materials arising out of the project to | ||||||
|  |     which your contribution was submitted, and | ||||||
|  | 
 | ||||||
|  |     * at our option, to sublicense these same rights to third parties through | ||||||
|  |     multiple levels of sublicensees or other licensing arrangements. | ||||||
|  | 
 | ||||||
|  | 4. Except as set out above, you keep all right, title, and interest in your | ||||||
|  | contribution. The rights that you grant to us under these terms are effective | ||||||
|  | on the date you first submitted a contribution to us, even if your submission | ||||||
|  | took place before the date you sign these terms. | ||||||
|  | 
 | ||||||
|  | 5. You covenant, represent, warrant and agree that: | ||||||
|  | 
 | ||||||
|  |     * Each contribution that you submit is and shall be an original work of | ||||||
|  |     authorship and you can legally grant the rights set out in this SCA; | ||||||
|  | 
 | ||||||
|  |     * to the best of your knowledge, each contribution will not violate any | ||||||
|  |     third party's copyrights, trademarks, patents, or other intellectual | ||||||
|  |     property rights; and | ||||||
|  | 
 | ||||||
|  |     * each contribution shall be in compliance with U.S. export control laws and | ||||||
|  |     other applicable export and import laws. You agree to notify us if you | ||||||
|  |     become aware of any circumstance which would make any of the foregoing | ||||||
|  |     representations inaccurate in any respect. We may publicly disclose your | ||||||
|  |     participation in the project, including the fact that you have signed the SCA. | ||||||
|  | 
 | ||||||
|  | 6. This SCA is governed by the laws of the State of California and applicable | ||||||
|  | U.S. Federal law. Any choice of law rules will not apply. | ||||||
|  | 
 | ||||||
|  | 7. Please place an “x” on one of the applicable statement below. Please do NOT | ||||||
|  | mark both statements: | ||||||
|  | 
 | ||||||
|  |     * [x] I am signing on behalf of myself as an individual and no other person | ||||||
|  |     or entity, including my employer, has or will have rights with respect to my | ||||||
|  |     contributions. | ||||||
|  | 
 | ||||||
|  |     * [ ] I am signing on behalf of my employer or a legal entity and I have the | ||||||
|  |     actual authority to contractually bind that entity. | ||||||
|  | 
 | ||||||
|  | ## Contributor Details | ||||||
|  | 
 | ||||||
|  | | Field                          | Entry                | | ||||||
|  | |------------------------------- | -------------------- | | ||||||
|  | | Name                           | Florijan Stamenkovic | | ||||||
|  | | Company name (if applicable)   |                      | | ||||||
|  | | Title or role (if applicable)  |                      | | ||||||
|  | | Date                           | 2020-10-05           | | ||||||
|  | | GitHub username                | florijanstamenkovic  | | ||||||
|  | | Website (optional)             |                      | | ||||||
							
								
								
									
										106
									
								
								.github/contributors/zaibacu.md
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										106
									
								
								.github/contributors/zaibacu.md
									
									
									
									
										vendored
									
									
										Normal file
									
								
							|  | @ -0,0 +1,106 @@ | ||||||
|  | # spaCy contributor agreement | ||||||
|  | 
 | ||||||
|  | This spaCy Contributor Agreement (**"SCA"**) is based on the | ||||||
|  | [Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf). | ||||||
|  | The SCA applies to any contribution that you make to any product or project | ||||||
|  | managed by us (the **"project"**), and sets out the intellectual property rights | ||||||
|  | you grant to us in the contributed materials. The term **"us"** shall mean | ||||||
|  | [ExplosionAI GmbH](https://explosion.ai/legal). The term | ||||||
|  | **"you"** shall mean the person or entity identified below. | ||||||
|  | 
 | ||||||
|  | If you agree to be bound by these terms, fill in the information requested | ||||||
|  | below and include the filled-in version with your first pull request, under the | ||||||
|  | folder [`.github/contributors/`](/.github/contributors/). The name of the file | ||||||
|  | should be your GitHub username, with the extension `.md`. For example, the user | ||||||
|  | example_user would create the file `.github/contributors/example_user.md`. | ||||||
|  | 
 | ||||||
|  | Read this agreement carefully before signing. These terms and conditions | ||||||
|  | constitute a binding legal agreement. | ||||||
|  | 
 | ||||||
|  | ## Contributor Agreement | ||||||
|  | 
 | ||||||
|  | 1. The term "contribution" or "contributed materials" means any source code, | ||||||
|  | object code, patch, tool, sample, graphic, specification, manual, | ||||||
|  | documentation, or any other material posted or submitted by you to the project. | ||||||
|  | 
 | ||||||
|  | 2. With respect to any worldwide copyrights, or copyright applications and | ||||||
|  | registrations, in your contribution: | ||||||
|  | 
 | ||||||
|  |     * you hereby assign to us joint ownership, and to the extent that such | ||||||
|  |     assignment is or becomes invalid, ineffective or unenforceable, you hereby | ||||||
|  |     grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge, | ||||||
|  |     royalty-free, unrestricted license to exercise all rights under those | ||||||
|  |     copyrights. This includes, at our option, the right to sublicense these same | ||||||
|  |     rights to third parties through multiple levels of sublicensees or other | ||||||
|  |     licensing arrangements; | ||||||
|  | 
 | ||||||
|  |     * you agree that each of us can do all things in relation to your | ||||||
|  |     contribution as if each of us were the sole owners, and if one of us makes | ||||||
|  |     a derivative work of your contribution, the one who makes the derivative | ||||||
|  |     work (or has it made will be the sole owner of that derivative work; | ||||||
|  | 
 | ||||||
|  |     * you agree that you will not assert any moral rights in your contribution | ||||||
|  |     against us, our licensees or transferees; | ||||||
|  | 
 | ||||||
|  |     * you agree that we may register a copyright in your contribution and | ||||||
|  |     exercise all ownership rights associated with it; and | ||||||
|  | 
 | ||||||
|  |     * you agree that neither of us has any duty to consult with, obtain the | ||||||
|  |     consent of, pay or render an accounting to the other for any use or | ||||||
|  |     distribution of your contribution. | ||||||
|  | 
 | ||||||
|  | 3. With respect to any patents you own, or that you can license without payment | ||||||
|  | to any third party, you hereby grant to us a perpetual, irrevocable, | ||||||
|  | non-exclusive, worldwide, no-charge, royalty-free license to: | ||||||
|  | 
 | ||||||
|  |     * make, have made, use, sell, offer to sell, import, and otherwise transfer | ||||||
|  |     your contribution in whole or in part, alone or in combination with or | ||||||
|  |     included in any product, work or materials arising out of the project to | ||||||
|  |     which your contribution was submitted, and | ||||||
|  | 
 | ||||||
|  |     * at our option, to sublicense these same rights to third parties through | ||||||
|  |     multiple levels of sublicensees or other licensing arrangements. | ||||||
|  | 
 | ||||||
|  | 4. Except as set out above, you keep all right, title, and interest in your | ||||||
|  | contribution. The rights that you grant to us under these terms are effective | ||||||
|  | on the date you first submitted a contribution to us, even if your submission | ||||||
|  | took place before the date you sign these terms. | ||||||
|  | 
 | ||||||
|  | 5. You covenant, represent, warrant and agree that: | ||||||
|  | 
 | ||||||
|  |     * Each contribution that you submit is and shall be an original work of | ||||||
|  |     authorship and you can legally grant the rights set out in this SCA; | ||||||
|  | 
 | ||||||
|  |     * to the best of your knowledge, each contribution will not violate any | ||||||
|  |     third party's copyrights, trademarks, patents, or other intellectual | ||||||
|  |     property rights; and | ||||||
|  | 
 | ||||||
|  |     * each contribution shall be in compliance with U.S. export control laws and | ||||||
|  |     other applicable export and import laws. You agree to notify us if you | ||||||
|  |     become aware of any circumstance which would make any of the foregoing | ||||||
|  |     representations inaccurate in any respect. We may publicly disclose your | ||||||
|  |     participation in the project, including the fact that you have signed the SCA. | ||||||
|  | 
 | ||||||
|  | 6. This SCA is governed by the laws of the State of California and applicable | ||||||
|  | U.S. Federal law. Any choice of law rules will not apply. | ||||||
|  | 
 | ||||||
|  | 7. Please place an “x” on one of the applicable statement below. Please do NOT | ||||||
|  | mark both statements: | ||||||
|  | 
 | ||||||
|  |     * [x] I am signing on behalf of myself as an individual and no other person | ||||||
|  |     or entity, including my employer, has or will have rights with respect to my | ||||||
|  |     contributions. | ||||||
|  | 
 | ||||||
|  |     * [ ] I am signing on behalf of my employer or a legal entity and I have the | ||||||
|  |     actual authority to contractually bind that entity. | ||||||
|  | 
 | ||||||
|  | ## Contributor Details | ||||||
|  | 
 | ||||||
|  | | Field                          | Entry                | | ||||||
|  | |------------------------------- | -------------------- | | ||||||
|  | | Name                           | Šarūnas Navickas     | | ||||||
|  | | Company name (if applicable)   | TokenMill            | | ||||||
|  | | Title or role (if applicable)  | Data Engineer        | | ||||||
|  | | Date                           | 2020-09-24           | | ||||||
|  | | GitHub username                | zaibacu              | | ||||||
|  | | Website (optional)             |                      | | ||||||
|  | @ -1,5 +1,6 @@ | ||||||
| from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS | from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS | ||||||
| from .stop_words import STOP_WORDS | from .stop_words import STOP_WORDS | ||||||
|  | from .syntax_iterators import SYNTAX_ITERATORS | ||||||
| from .lex_attrs import LEX_ATTRS | from .lex_attrs import LEX_ATTRS | ||||||
| from ...language import Language | from ...language import Language | ||||||
| 
 | 
 | ||||||
|  | @ -8,6 +9,7 @@ class TurkishDefaults(Language.Defaults): | ||||||
|     tokenizer_exceptions = TOKENIZER_EXCEPTIONS |     tokenizer_exceptions = TOKENIZER_EXCEPTIONS | ||||||
|     lex_attr_getters = LEX_ATTRS |     lex_attr_getters = LEX_ATTRS | ||||||
|     stop_words = STOP_WORDS |     stop_words = STOP_WORDS | ||||||
|  |     syntax_iterators = SYNTAX_ITERATORS | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| class Turkish(Language): | class Turkish(Language): | ||||||
|  |  | ||||||
|  | @ -32,6 +32,36 @@ _num_words = [ | ||||||
| ] | ] | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|  | _ordinal_words = [ | ||||||
|  |     "birinci", | ||||||
|  |     "ikinci", | ||||||
|  |     "üçüncü", | ||||||
|  |     "dördüncü", | ||||||
|  |     "beşinci", | ||||||
|  |     "altıncı", | ||||||
|  |     "yedinci", | ||||||
|  |     "sekizinci", | ||||||
|  |     "dokuzuncu", | ||||||
|  |     "onuncu", | ||||||
|  |     "yirminci", | ||||||
|  |     "otuzuncu", | ||||||
|  |     "kırkıncı", | ||||||
|  |     "ellinci", | ||||||
|  |     "altmışıncı", | ||||||
|  |     "yetmişinci", | ||||||
|  |     "sekseninci", | ||||||
|  |     "doksanıncı", | ||||||
|  |     "yüzüncü", | ||||||
|  |     "bininci", | ||||||
|  |     "mliyonuncu", | ||||||
|  |     "milyarıncı", | ||||||
|  |     "trilyonuncu", | ||||||
|  |     "katrilyonuncu", | ||||||
|  |     "kentilyonuncu", | ||||||
|  | ] | ||||||
|  | 
 | ||||||
|  | _ordinal_endings = ("inci", "ıncı", "nci", "ncı", "uncu", "üncü") | ||||||
|  | 
 | ||||||
| def like_num(text): | def like_num(text): | ||||||
|     if text.startswith(("+", "-", "±", "~")): |     if text.startswith(("+", "-", "±", "~")): | ||||||
|         text = text[1:] |         text = text[1:] | ||||||
|  | @ -42,8 +72,20 @@ def like_num(text): | ||||||
|         num, denom = text.split("/") |         num, denom = text.split("/") | ||||||
|         if num.isdigit() and denom.isdigit(): |         if num.isdigit() and denom.isdigit(): | ||||||
|             return True |             return True | ||||||
|     if text.lower() in _num_words: | 
 | ||||||
|  |     text_lower = text.lower() | ||||||
|  | 
 | ||||||
|  |     #Check cardinal number | ||||||
|  |     if text_lower in _num_words: | ||||||
|         return True |         return True | ||||||
|  | 
 | ||||||
|  |     #Check ordinal number | ||||||
|  |     if text_lower in _ordinal_words: | ||||||
|  |         return True | ||||||
|  |     if text_lower.endswith(_ordinal_endings): | ||||||
|  |         if text_lower[:-3].isdigit() or text_lower[:-4].isdigit(): | ||||||
|  |             return True | ||||||
|  | 
 | ||||||
|     return False |     return False | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
							
								
								
									
										59
									
								
								spacy/lang/tr/syntax_iterators.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										59
									
								
								spacy/lang/tr/syntax_iterators.py
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,59 @@ | ||||||
|  | # coding: utf8 | ||||||
|  | from __future__ import unicode_literals | ||||||
|  | 
 | ||||||
|  | from ...symbols import NOUN, PROPN, PRON | ||||||
|  | from ...errors import Errors | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def noun_chunks(doclike): | ||||||
|  |     """ | ||||||
|  |     Detect base noun phrases from a dependency parse. Works on both Doc and Span. | ||||||
|  |     """ | ||||||
|  |     # Please see documentation for Turkish NP structure | ||||||
|  |     labels = [ | ||||||
|  |         "nsubj", | ||||||
|  |         "iobj", | ||||||
|  |         "obj", | ||||||
|  |         "obl", | ||||||
|  |         "appos", | ||||||
|  |         "orphan", | ||||||
|  |         "dislocated", | ||||||
|  |         "ROOT", | ||||||
|  |     ] | ||||||
|  |     doc = doclike.doc  # Ensure works on both Doc and Span. | ||||||
|  |     if not doc.has_annotation("DEP"): | ||||||
|  |         raise ValueError(Errors.E029) | ||||||
|  | 
 | ||||||
|  |     np_deps = [doc.vocab.strings.add(label) for label in labels] | ||||||
|  |     conj = doc.vocab.strings.add("conj") | ||||||
|  |     flat = doc.vocab.strings.add("flat") | ||||||
|  |     np_label = doc.vocab.strings.add("NP") | ||||||
|  | 
 | ||||||
|  |     def extend_right(w):  # Playing a trick for flat | ||||||
|  |         rindex = w.i + 1 | ||||||
|  |         for rdep in doc[w.i].rights:  # Extend the span to right if there is a flat | ||||||
|  |             if rdep.dep == flat and rdep.pos in (NOUN, PROPN): | ||||||
|  |                 rindex = rdep.i + 1 | ||||||
|  |             else: | ||||||
|  |                 break | ||||||
|  |         return rindex | ||||||
|  | 
 | ||||||
|  |     prev_end = len(doc) + 1 | ||||||
|  |     for i, word in reversed(list(enumerate(doclike))): | ||||||
|  |         if word.pos not in (NOUN, PROPN, PRON): | ||||||
|  |             continue | ||||||
|  |         # Prevent nested chunks from being produced | ||||||
|  |         if word.i >= prev_end: | ||||||
|  |             continue | ||||||
|  |         if word.dep in np_deps: | ||||||
|  |             prev_end = word.left_edge.i | ||||||
|  |             yield word.left_edge.i, extend_right(word), np_label | ||||||
|  |         elif word.dep == conj: | ||||||
|  |             cc_token = word.left_edge   | ||||||
|  |             prev_end = cc_token.i | ||||||
|  |             yield cc_token.right_edge.i + 1, extend_right(word), np_label  # Shave off cc tokens from the NP | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | SYNTAX_ITERATORS = {"noun_chunks": noun_chunks} | ||||||
|  | @ -239,6 +239,9 @@ def th_tokenizer(): | ||||||
| def tr_tokenizer(): | def tr_tokenizer(): | ||||||
|     return get_lang_class("tr")().tokenizer |     return get_lang_class("tr")().tokenizer | ||||||
| 
 | 
 | ||||||
|  | @pytest.fixture(scope="session") | ||||||
|  | def tr_vocab(): | ||||||
|  |     return get_lang_class("tr").Defaults.create_vocab() | ||||||
| 
 | 
 | ||||||
| @pytest.fixture(scope="session") | @pytest.fixture(scope="session") | ||||||
| def tt_tokenizer(): | def tt_tokenizer(): | ||||||
|  |  | ||||||
							
								
								
									
										12
									
								
								spacy/tests/lang/tr/test_noun_chunks.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										12
									
								
								spacy/tests/lang/tr/test_noun_chunks.py
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,12 @@ | ||||||
|  | import pytest | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_noun_chunks_is_parsed(tr_tokenizer): | ||||||
|  |     """Test that noun_chunks raises Value Error for 'tr' language if Doc is not parsed. | ||||||
|  |     To check this test, we're constructing a Doc | ||||||
|  |     with a new Vocab here and forcing is_parsed to 'False' | ||||||
|  |     to make sure the noun chunks don't run. | ||||||
|  |     """ | ||||||
|  |     doc = tr_tokenizer("Dün seni gördüm.") | ||||||
|  |     with pytest.raises(ValueError): | ||||||
|  |         list(doc.noun_chunks) | ||||||
							
								
								
									
										570
									
								
								spacy/tests/lang/tr/test_parser.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										570
									
								
								spacy/tests/lang/tr/test_parser.py
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,570 @@ | ||||||
|  | from spacy.tokens import Doc | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_amod_simple(tr_tokenizer): | ||||||
|  |     text = "sarı kedi" | ||||||
|  |     heads = [1, 1] | ||||||
|  |     deps = ["amod", "ROOT"] | ||||||
|  |     pos = ["ADJ", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "sarı kedi " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_nmod_simple(tr_tokenizer): | ||||||
|  |     text = "arkadaşımın kedisi"  # my friend's cat | ||||||
|  |     heads = [1, 1] | ||||||
|  |     deps = ["nmod", "ROOT"] | ||||||
|  |     pos = ["NOUN", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "arkadaşımın kedisi " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_determiner_simple(tr_tokenizer): | ||||||
|  |     text = "O kedi"  # that cat | ||||||
|  |     heads = [1, 1] | ||||||
|  |     deps = ["det", "ROOT"] | ||||||
|  |     pos = ["DET", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "O kedi " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_nmod_amod(tr_tokenizer): | ||||||
|  |     text = "okulun eski müdürü" | ||||||
|  |     heads = [2, 2, 2] | ||||||
|  |     deps = ["nmod", "amod", "ROOT"] | ||||||
|  |     pos = ["NOUN", "ADJ", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "okulun eski müdürü " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_one_det_one_adj_simple(tr_tokenizer): | ||||||
|  |     text = "O sarı kedi" | ||||||
|  |     heads = [2, 2, 2] | ||||||
|  |     deps = ["det", "amod", "ROOT"] | ||||||
|  |     pos = ["DET", "ADJ", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "O sarı kedi " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_two_adjs_simple(tr_tokenizer): | ||||||
|  |     text = "beyaz tombik kedi" | ||||||
|  |     heads = [2, 2, 2] | ||||||
|  |     deps = ["amod", "amod", "ROOT"] | ||||||
|  |     pos = ["ADJ", "ADJ", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "beyaz tombik kedi " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_one_det_two_adjs_simple(tr_tokenizer): | ||||||
|  |     text = "o beyaz tombik kedi" | ||||||
|  |     heads = [3, 3, 3, 3] | ||||||
|  |     deps = ["det", "amod", "amod", "ROOT"] | ||||||
|  |     pos = ["DET", "ADJ", "ADJ", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "o beyaz tombik kedi " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_nmod_two(tr_tokenizer): | ||||||
|  |     text = "kızın saçının rengi" | ||||||
|  |     heads = [1, 2, 2] | ||||||
|  |     deps = ["nmod", "nmod", "ROOT"] | ||||||
|  |     pos = ["NOUN", "NOUN", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "kızın saçının rengi " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_chain_nmod_with_adj(tr_tokenizer): | ||||||
|  |     text = "ev sahibinin tatlı köpeği" | ||||||
|  |     heads = [1, 3, 3, 3] | ||||||
|  |     deps = ["nmod", "nmod", "amod", "ROOT"] | ||||||
|  |     pos = ["NOUN", "NOUN", "ADJ", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "ev sahibinin tatlı köpeği " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_chain_nmod_with_acl(tr_tokenizer): | ||||||
|  |     text = "ev sahibinin gelen köpeği" | ||||||
|  |     heads = [1, 3, 3, 3] | ||||||
|  |     deps = ["nmod", "nmod", "acl", "ROOT"] | ||||||
|  |     pos = ["NOUN", "NOUN", "VERB", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "ev sahibinin gelen köpeği " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_chain_nmod_head_with_amod_acl(tr_tokenizer): | ||||||
|  |     text = "arabanın kırdığım sol aynası" | ||||||
|  |     heads = [3, 3, 3, 3] | ||||||
|  |     deps = ["nmod", "acl", "amod", "ROOT"] | ||||||
|  |     pos = ["NOUN", "VERB", "ADJ", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "arabanın kırdığım sol aynası " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_nmod_three(tr_tokenizer): | ||||||
|  |     text = "güney Afrika ülkelerinden Mozambik" | ||||||
|  |     heads = [1, 2, 3, 3] | ||||||
|  |     deps = ["nmod", "nmod", "nmod", "ROOT"] | ||||||
|  |     pos = ["NOUN", "PROPN", "NOUN", "PROPN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "güney Afrika ülkelerinden Mozambik " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_det_amod_nmod(tr_tokenizer): | ||||||
|  |     text = "bazı eski oyun kuralları" | ||||||
|  |     heads = [3, 3, 3, 3] | ||||||
|  |     deps = ["det", "nmod", "nmod", "ROOT"] | ||||||
|  |     pos = ["DET", "ADJ", "NOUN", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "bazı eski oyun kuralları " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_acl_simple(tr_tokenizer): | ||||||
|  |     text = "bahçesi olan okul" | ||||||
|  |     heads = [2, 0, 2] | ||||||
|  |     deps = ["acl", "cop", "ROOT"] | ||||||
|  |     pos = ["NOUN", "AUX", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "bahçesi olan okul " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_acl_verb(tr_tokenizer): | ||||||
|  |     text = "sevdiğim sanatçılar" | ||||||
|  |     heads = [1, 1] | ||||||
|  |     deps = ["acl", "ROOT"] | ||||||
|  |     pos = ["VERB", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "sevdiğim sanatçılar " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_acl_nmod(tr_tokenizer): | ||||||
|  |     text = "en sevdiğim ses sanatçısı" | ||||||
|  |     heads = [1, 3, 3, 3] | ||||||
|  |     deps = ["advmod", "acl", "nmod", "ROOT"] | ||||||
|  |     pos = ["ADV", "VERB", "NOUN", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "en sevdiğim ses sanatçısı " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_acl_nmod(tr_tokenizer): | ||||||
|  |     text = "bildiğim bir turizm şirketi" | ||||||
|  |     heads = [3, 3, 3, 3] | ||||||
|  |     deps = ["acl", "det", "nmod", "ROOT"] | ||||||
|  |     pos = ["VERB", "DET", "NOUN", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "bildiğim bir turizm şirketi " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_np_recursive_nsubj_to_root(tr_tokenizer): | ||||||
|  |     text = "Simge'nin okuduğu kitap" | ||||||
|  |     heads = [1, 2, 2] | ||||||
|  |     deps = ["nsubj", "acl", "ROOT"] | ||||||
|  |     pos = ["PROPN", "VERB", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "Simge'nin okuduğu kitap " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_np_recursive_nsubj_attached_to_pron_root(tr_tokenizer): | ||||||
|  |     text = "Simge'nin konuşabileceği birisi" | ||||||
|  |     heads = [1, 2, 2] | ||||||
|  |     deps = ["nsubj", "acl", "ROOT"] | ||||||
|  |     pos = ["PROPN", "VERB", "PRON"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "Simge'nin konuşabileceği birisi " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_np_recursive_nsubj_in_subnp(tr_tokenizer): | ||||||
|  |     text = "Simge'nin yarın gideceği yer" | ||||||
|  |     heads = [2, 2, 3, 3] | ||||||
|  |     deps = ["nsubj", "obl", "acl", "ROOT"] | ||||||
|  |     pos = ["PROPN", "NOUN", "VERB", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "Simge'nin yarın gideceği yer " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_np_recursive_two_nmods(tr_tokenizer): | ||||||
|  |     text = "ustanın kapısını degiştireceği çamasır makinası" | ||||||
|  |     heads = [2, 2, 4, 4, 4] | ||||||
|  |     deps = ["nsubj", "obj", "acl", "nmod", "ROOT"] | ||||||
|  |     pos = ["NOUN", "NOUN", "VERB", "NOUN", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "ustanın kapısını degiştireceği çamasır makinası " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_np_recursive_four_nouns(tr_tokenizer): | ||||||
|  |     text = "kızına piyano dersi verdiğim hanım" | ||||||
|  |     heads = [3, 2, 3, 4, 4] | ||||||
|  |     deps = ["obl", "nmod", "obj", "acl", "ROOT"] | ||||||
|  |     pos = ["NOUN", "NOUN", "NOUN", "VERB", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "kızına piyano dersi verdiğim hanım " | ||||||
|  | 
 | ||||||
|  |      | ||||||
|  | def test_tr_noun_chunks_np_recursive_no_nmod(tr_tokenizer): | ||||||
|  |     text = "içine birkaç çiçek konmuş olan bir vazo" | ||||||
|  |     heads = [3, 2, 3, 6, 3, 6, 6] | ||||||
|  |     deps = ["obl", "det", "nsubj", "acl", "aux", "det", "ROOT"] | ||||||
|  |     pos = ["ADP", "DET", "NOUN", "VERB", "AUX", "DET", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "içine birkaç çiçek konmuş olan bir vazo " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_np_recursive_long_two_acls(tr_tokenizer): | ||||||
|  |     text = "içine Simge'nin bahçesinden toplanmış birkaç çiçeğin konmuş olduğu bir vazo" | ||||||
|  |     heads = [6, 2, 3, 5, 5, 6, 9, 6, 9, 9] | ||||||
|  |     deps = ["obl", "nmod" , "obl", "acl", "det", "nsubj", "acl", "aux", "det", "ROOT"] | ||||||
|  |     pos = ["ADP", "PROPN", "NOUN", "VERB", "DET", "NOUN", "VERB", "AUX", "DET", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "içine Simge'nin bahçesinden toplanmış birkaç çiçeğin konmuş olduğu bir vazo " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_two_nouns_in_nmod(tr_tokenizer): | ||||||
|  |     text = "kız ve erkek çocuklar" | ||||||
|  |     heads = [3, 2, 0, 3] | ||||||
|  |     deps = ["nmod", "cc", "conj", "ROOT"] | ||||||
|  |     pos = ["NOUN", "CCONJ", "NOUN", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "kız ve erkek çocuklar " | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_two_nouns_in_nmod(tr_tokenizer): | ||||||
|  |     text = "tatlı ve gürbüz çocuklar" | ||||||
|  |     heads = [3, 2, 0, 3] | ||||||
|  |     deps = ["amod", "cc", "conj", "ROOT"] | ||||||
|  |     pos = ["ADJ", "CCONJ", "NOUN", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "tatlı ve gürbüz çocuklar " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_conj_simple(tr_tokenizer): | ||||||
|  |     text = "Sen ya da ben" | ||||||
|  |     heads = [0, 3, 1, 0] | ||||||
|  |     deps = ["ROOT", "cc", "fixed", "conj"] | ||||||
|  |     pos = ["PRON", "CCONJ", "CCONJ", "PRON"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 2 | ||||||
|  |     assert chunks[0].text_with_ws == "ben " | ||||||
|  |     assert chunks[1].text_with_ws == "Sen " | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_conj_three(tr_tokenizer): | ||||||
|  |     text = "sen, ben ve ondan" | ||||||
|  |     heads = [0, 2, 0, 4, 0] | ||||||
|  |     deps = ["ROOT", "punct", "conj", "cc", "conj"] | ||||||
|  |     pos = ["PRON", "PUNCT", "PRON", "CCONJ", "PRON"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 3 | ||||||
|  |     assert chunks[0].text_with_ws == "ondan " | ||||||
|  |     assert chunks[1].text_with_ws == "ben " | ||||||
|  |     assert chunks[2].text_with_ws == "sen " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_conj_three(tr_tokenizer): | ||||||
|  |     text = "ben ya da sen ya da onlar" | ||||||
|  |     heads = [0, 3, 1, 0, 6, 4, 3] | ||||||
|  |     deps = ["ROOT", "cc", "fixed", "conj", "cc", "fixed", "conj"] | ||||||
|  |     pos = ["PRON", "CCONJ", "CCONJ", "PRON", "CCONJ", "CCONJ", "PRON"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 3 | ||||||
|  |     assert chunks[0].text_with_ws == "onlar " | ||||||
|  |     assert chunks[1].text_with_ws == "sen " | ||||||
|  |     assert chunks[2].text_with_ws == "ben " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_conj_and_adj_phrase(tr_tokenizer): | ||||||
|  |     text = "ben ve akıllı çocuk" | ||||||
|  |     heads = [0, 3, 3, 0] | ||||||
|  |     deps = ["ROOT", "cc", "amod", "conj"] | ||||||
|  |     pos = ["PRON", "CCONJ", "ADJ", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 2 | ||||||
|  |     assert chunks[0].text_with_ws == "akıllı çocuk " | ||||||
|  |     assert chunks[1].text_with_ws == "ben " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_conj_fixed_adj_phrase(tr_tokenizer): | ||||||
|  |     text = "ben ya da akıllı çocuk" | ||||||
|  |     heads = [0, 4, 1, 4, 0] | ||||||
|  |     deps = ["ROOT", "cc", "fixed", "amod", "conj"] | ||||||
|  |     pos = ["PRON", "CCONJ", "CCONJ", "ADJ", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 2 | ||||||
|  |     assert chunks[0].text_with_ws == "akıllı çocuk " | ||||||
|  |     assert chunks[1].text_with_ws == "ben " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_conj_subject(tr_tokenizer): | ||||||
|  |     text = "Sen ve ben iyi anlaşıyoruz" | ||||||
|  |     heads = [4, 2, 0, 2, 4] | ||||||
|  |     deps = ["nsubj", "cc", "conj", "adv", "ROOT"] | ||||||
|  |     pos = ["PRON", "CCONJ", "PRON", "ADV", "VERB"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 2 | ||||||
|  |     assert chunks[0].text_with_ws == "ben " | ||||||
|  |     assert chunks[1].text_with_ws == "Sen " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_conj_noun_head_verb(tr_tokenizer): | ||||||
|  |     text = "Simge babasını görmüyormuş, annesini değil" | ||||||
|  |     heads = [2, 2, 2, 4, 2, 4] | ||||||
|  |     deps = ["nsubj", "obj", "ROOT", "punct", "conj", "aux"] | ||||||
|  |     pos = ["PROPN", "NOUN", "VERB", "PUNCT", "NOUN", "AUX"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 3 | ||||||
|  |     assert chunks[0].text_with_ws == "annesini " | ||||||
|  |     assert chunks[1].text_with_ws == "babasını " | ||||||
|  |     assert chunks[2].text_with_ws == "Simge " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_flat_simple(tr_tokenizer): | ||||||
|  |     text = "New York" | ||||||
|  |     heads = [0, 0] | ||||||
|  |     deps = ["ROOT", "flat"] | ||||||
|  |     pos = ["PROPN", "PROPN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "New York " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_flat_names_and_title(tr_tokenizer): | ||||||
|  |     text = "Gazi Mustafa Kemal" | ||||||
|  |     heads = [1, 1, 1] | ||||||
|  |     deps = ["nmod", "ROOT", "flat"] | ||||||
|  |     pos = ["PROPN", "PROPN", "PROPN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "Gazi Mustafa Kemal " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_flat_names_and_title(tr_tokenizer): | ||||||
|  |     text = "Ahmet Vefik Paşa" | ||||||
|  |     heads = [2, 0, 2] | ||||||
|  |     deps = ["nmod", "flat", "ROOT"] | ||||||
|  |     pos = ["PROPN", "PROPN", "PROPN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "Ahmet Vefik Paşa " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_flat_name_lastname_and_title(tr_tokenizer): | ||||||
|  |     text = "Cumhurbaşkanı Ahmet Necdet Sezer" | ||||||
|  |     heads = [1, 1, 1, 1] | ||||||
|  |     deps = ["nmod", "ROOT", "flat", "flat"] | ||||||
|  |     pos = ["NOUN", "PROPN", "PROPN", "PROPN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "Cumhurbaşkanı Ahmet Necdet Sezer " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_flat_in_nmod(tr_tokenizer): | ||||||
|  |     text = "Ahmet Sezer adında bir ögrenci" | ||||||
|  |     heads = [2, 0, 4, 4, 4] | ||||||
|  |     deps = ["nmod", "flat", "nmod", "det", "ROOT"] | ||||||
|  |     pos = ["PROPN", "PROPN", "NOUN", "DET", "NOUN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "Ahmet Sezer adında bir ögrenci " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_flat_and_chain_nmod(tr_tokenizer): | ||||||
|  |     text = "Batı Afrika ülkelerinden Sierra Leone" | ||||||
|  |     heads = [1, 2, 3, 3, 3] | ||||||
|  |     deps = ["nmod", "nmod", "nmod", "ROOT", "flat"] | ||||||
|  |     pos = ["NOUN", "PROPN", "NOUN", "PROPN", "PROPN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 1 | ||||||
|  |     assert chunks[0].text_with_ws == "Batı Afrika ülkelerinden Sierra Leone " | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_tr_noun_chunks_two_flats_conjed(tr_tokenizer): | ||||||
|  |     text = "New York ve Sierra Leone" | ||||||
|  |     heads = [0, 0, 3, 0, 3] | ||||||
|  |     deps = ["ROOT", "flat", "cc", "conj", "flat"] | ||||||
|  |     pos = ["PROPN", "PROPN", "CCONJ", "PROPN", "PROPN"] | ||||||
|  |     tokens = tr_tokenizer(text) | ||||||
|  |     doc = Doc( | ||||||
|  |         tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps | ||||||
|  |     ) | ||||||
|  |     chunks = list(doc.noun_chunks) | ||||||
|  |     assert len(chunks) == 2 | ||||||
|  |     assert chunks[0].text_with_ws == "Sierra Leone " | ||||||
|  |     assert chunks[1].text_with_ws == "New York " | ||||||
							
								
								
									
										29
									
								
								spacy/tests/lang/tr/test_text.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										29
									
								
								spacy/tests/lang/tr/test_text.py
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,29 @@ | ||||||
|  | import pytest | ||||||
|  | from spacy.lang.tr.lex_attrs import like_num | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | @pytest.mark.parametrize( | ||||||
|  |     "word", | ||||||
|  |     [ | ||||||
|  |         "bir", | ||||||
|  |         "iki", | ||||||
|  |         "dört", | ||||||
|  |         "altı", | ||||||
|  |         "milyon", | ||||||
|  |         "100", | ||||||
|  |         "birinci", | ||||||
|  |         "üçüncü", | ||||||
|  |         "beşinci", | ||||||
|  |         "100üncü", | ||||||
|  |         "8inci" | ||||||
|  |     ] | ||||||
|  | ) | ||||||
|  | def test_tr_lex_attrs_like_number_cardinal_ordinal(word): | ||||||
|  |     assert like_num(word) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | @pytest.mark.parametrize("word", ["beş", "yedi", "yedinci", "birinci"]) | ||||||
|  | def test_tr_lex_attrs_capitals(word): | ||||||
|  |     assert like_num(word) | ||||||
|  |     assert like_num(word.upper()) | ||||||
|  | 
 | ||||||
							
								
								
									
										15
									
								
								spacy/tests/regression/test_issue6207.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										15
									
								
								spacy/tests/regression/test_issue6207.py
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,15 @@ | ||||||
|  | from spacy.util import filter_spans | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def test_issue6207(en_tokenizer): | ||||||
|  |     doc = en_tokenizer("zero one two three four five six") | ||||||
|  | 
 | ||||||
|  |     # Make spans | ||||||
|  |     s1 = doc[:4] | ||||||
|  |     s2 = doc[3:6]   # overlaps with s1 | ||||||
|  |     s3 = doc[5:7]   # overlaps with s2, not s1 | ||||||
|  | 
 | ||||||
|  |     result = filter_spans((s1, s2, s3)) | ||||||
|  |     assert s1 in result | ||||||
|  |     assert s2 not in result | ||||||
|  |     assert s3 in result | ||||||
|  | @ -167,6 +167,7 @@ rule-based matching are: | ||||||
| |  `IS_ALPHA`, `IS_ASCII`, `IS_DIGIT`             | Token text consists of alphabetic characters, ASCII characters, digits. ~~bool~~                                          | | |  `IS_ALPHA`, `IS_ASCII`, `IS_DIGIT`             | Token text consists of alphabetic characters, ASCII characters, digits. ~~bool~~                                          | | ||||||
| |  `IS_LOWER`, `IS_UPPER`, `IS_TITLE`             | Token text is in lowercase, uppercase, titlecase. ~~bool~~                                                                | | |  `IS_LOWER`, `IS_UPPER`, `IS_TITLE`             | Token text is in lowercase, uppercase, titlecase. ~~bool~~                                                                | | ||||||
| |  `IS_PUNCT`, `IS_SPACE`, `IS_STOP`              | Token is punctuation, whitespace, stop word. ~~bool~~                                                                     | | |  `IS_PUNCT`, `IS_SPACE`, `IS_STOP`              | Token is punctuation, whitespace, stop word. ~~bool~~                                                                     | | ||||||
|  | |  `IS_SENT_START`                                | Token is start of sentence. ~~bool~~                                                                                      | | ||||||
| |  `LIKE_NUM`, `LIKE_URL`, `LIKE_EMAIL`           | Token text resembles a number, URL, email. ~~bool~~                                                                       | | |  `LIKE_NUM`, `LIKE_URL`, `LIKE_EMAIL`           | Token text resembles a number, URL, email. ~~bool~~                                                                       | | ||||||
| |  `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. ~~str~~       | | |  `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. ~~str~~       | | ||||||
| | `ENT_TYPE`                                      | The token's entity label. ~~str~~                                                                                         | | | `ENT_TYPE`                                      | The token's entity label. ~~str~~                                                                                         | | ||||||
|  |  | ||||||
|  | @ -2542,6 +2542,42 @@ | ||||||
|             "author_links": { |             "author_links": { | ||||||
|                 "github": "abchapman93" |                 "github": "abchapman93" | ||||||
|             } |             } | ||||||
|  |         }, | ||||||
|  | 	      { | ||||||
|  |             "id": "rita-dsl", | ||||||
|  |             "title": "RITA DSL", | ||||||
|  |             "slogan": "Domain Specific Language for creating language rules", | ||||||
|  |             "github": "zaibacu/rita-dsl", | ||||||
|  |             "description": "A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format", | ||||||
|  |             "pip": "rita-dsl", | ||||||
|  | 	          "thumb": "https://raw.githubusercontent.com/zaibacu/rita-dsl/master/docs/assets/logo-100px.png", | ||||||
|  |             "code_language": "python", | ||||||
|  |             "code_example": [ | ||||||
|  |                 "import spacy", | ||||||
|  |                 "from rita.shortcuts import setup_spacy", | ||||||
|  |                 "", | ||||||
|  |                 "rules = \"\"\"", | ||||||
|  |                 "cuts = {\"fitted\", \"wide-cut\"}", | ||||||
|  |                 "lengths = {\"short\", \"long\", \"calf-length\", \"knee-length\"}", | ||||||
|  |                 "fabric_types = {\"soft\", \"airy\", \"crinkled\"}", | ||||||
|  |                 "fabrics = {\"velour\", \"chiffon\", \"knit\", \"woven\", \"stretch\"}", | ||||||
|  |                 "", | ||||||
|  |                 "{IN_LIST(cuts)?, IN_LIST(lengths), WORD(\"dress\")}->MARK(\"DRESS_TYPE\")", | ||||||
|  |                 "{IN_LIST(lengths), IN_LIST(cuts), WORD(\"dress\")}->MARK(\"DRESS_TYPE\")", | ||||||
|  |                 "{IN_LIST(fabric_types)?, IN_LIST(fabrics)}->MARK(\"DRESS_FABRIC\")", | ||||||
|  |                 "\"\"\"", | ||||||
|  |                 "", | ||||||
|  |                 "nlp = spacy.load(\"en\")", | ||||||
|  |                 "setup_spacy(nlp, rules_string=rules)", | ||||||
|  |                 "r = nlp(\"She was wearing a short wide-cut dress\")", | ||||||
|  |                 "print(list([{\"label\": e.label_, \"text\": e.text} for e in r.ents]))" | ||||||
|  |             ], | ||||||
|  |             "category": ["standalone"], | ||||||
|  |             "tags": ["dsl", "language-patterns", "language-rules", "nlp"], | ||||||
|  |             "author": "Šarūnas Navickas", | ||||||
|  |             "author_links": { | ||||||
|  |                 "github": "zaibacu" | ||||||
|  |             } | ||||||
|         } |         } | ||||||
|     ], |     ], | ||||||
| 
 | 
 | ||||||
|  |  | ||||||
		Loading…
	
		Reference in New Issue
	
	Block a user