Modernise span tests and don't depend on models

This commit is contained in:
Ines Montani 2017-01-12 15:30:49 +01:00
parent 92e3d8b3ee
commit 7cb3d74426

View File

@ -1,19 +1,22 @@
# coding: utf-8
from __future__ import unicode_literals from __future__ import unicode_literals
from spacy.attrs import HEAD
from spacy.en import English from ..util import get_doc
from spacy.tokens.doc import Doc
import numpy as np
import pytest import pytest
@pytest.fixture @pytest.fixture
def doc(EN): def doc(en_tokenizer):
return EN('This is a sentence. This is another sentence. And a third.') text = "This is a sentence. This is another sentence. And a third."
heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3, 0, 1, -2, -1]
deps = ['nsubj', 'ROOT', 'det', 'attr', 'punct', 'nsubj', 'ROOT', 'det',
'attr', 'punct', 'ROOT', 'det', 'npadvmod', 'punct']
tokens = en_tokenizer(text)
return get_doc(tokens.vocab, [t.text for t in tokens], heads=heads, deps=deps)
@pytest.mark.models def test_spans_sent_spans(doc):
def test_sent_spans(doc):
sents = list(doc.sents) sents = list(doc.sents)
assert sents[0].start == 0 assert sents[0].start == 0
assert sents[0].end == 5 assert sents[0].end == 5
@ -21,73 +24,50 @@ def test_sent_spans(doc):
assert sum(len(sent) for sent in sents) == len(doc) assert sum(len(sent) for sent in sents) == len(doc)
@pytest.mark.models def test_spans_root(doc):
def test_root(doc): span = doc[2:4]
np = doc[2:4] assert len(span) == 2
assert len(np) == 2 assert span.text == 'a sentence'
assert np.orth_ == 'a sentence' assert span.root.text == 'sentence'
assert np.root.orth_ == 'sentence' assert span.root.head.text == 'is'
assert np.root.head.orth_ == 'is'
def test_root2(EN): def test_spans_root2(en_tokenizer):
text = 'through North and South Carolina' text = "through North and South Carolina"
doc = EN(text) heads = [0, 3, -1, -2, -4]
heads = np.asarray([[0, 3, -1, -2, -4]], dtype='int32') tokens = en_tokenizer(text)
doc.from_array([HEAD], heads.T) doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads)
south_carolina = doc[-2:] assert doc[-2:].root.text == 'Carolina'
assert south_carolina.root.text == 'Carolina'
def test_sent(doc): def test_spans_span_sent(doc):
'''Test new span.sent property''' """Test span.sent property"""
#return EN('This is a sentence. This is another sentence. And a third.')
heads = np.asarray([[1, 0, -1, -1, -1, 1, 0, -1, -1, -1, 2, 1, 0, -1]], dtype='int32')
doc.from_array([HEAD], heads.T)
assert len(list(doc.sents)) assert len(list(doc.sents))
span = doc[:2] assert doc[:2].sent.root.text == 'is'
assert span.sent.root.text == 'is' assert doc[:2].sent.text == 'This is a sentence .'
assert span.sent.text == 'This is a sentence.' assert doc[6:7].sent.root.left_edge.text == 'This'
span = doc[6:7]
assert span.sent.root.left_edge.text == 'This'
def test_default_sentiment(EN): def test_spans_default_sentiment(en_tokenizer):
'''Test new span.sentiment property's default averaging behaviour''' """Test span.sentiment property's default averaging behaviour"""
good = EN.vocab[u'good'] text = "good stuff bad stuff"
good.sentiment = 3.0 tokens = en_tokenizer(text)
bad = EN.vocab[u'bad'] tokens.vocab[tokens[0].text].sentiment = 3.0
bad.sentiment = -2.0 tokens.vocab[tokens[2].text].sentiment = -2.0
doc = get_doc(tokens.vocab, [t.text for t in tokens])
doc = Doc(EN.vocab, [u'good', 'stuff', u'bad', u'stuff']) assert doc[:2].sentiment == 3.0 / 2
assert doc[-2:].sentiment == -2. / 2
good_stuff = doc[:2] assert doc[:-1].sentiment == (3.+-2) / 3.
assert good_stuff.sentiment == 3.0 / 2
bad_stuff = doc[-2:]
assert bad_stuff.sentiment == -2. / 2
good_stuff_bad = doc[:-1]
assert good_stuff_bad.sentiment == (3.+-2) / 3.
def test_spans_override_sentiment(en_tokenizer):
def test_override_sentiment(EN): """Test span.sentiment property's default averaging behaviour"""
'''Test new span.sentiment property's default averaging behaviour''' text = "good stuff bad stuff"
good = EN.vocab[u'good'] tokens = en_tokenizer(text)
good.sentiment = 3.0 tokens.vocab[tokens[0].text].sentiment = 3.0
bad = EN.vocab[u'bad'] tokens.vocab[tokens[2].text].sentiment = -2.0
bad.sentiment = -2.0 doc = get_doc(tokens.vocab, [t.text for t in tokens])
doc = Doc(EN.vocab, [u'good', 'stuff', u'bad', u'stuff'])
doc.user_span_hooks['sentiment'] = lambda span: 10.0 doc.user_span_hooks['sentiment'] = lambda span: 10.0
assert doc[:2].sentiment == 10.0
good_stuff = doc[:2] assert doc[-2:].sentiment == 10.0
assert good_stuff.sentiment == 10.0 assert doc[:-1].sentiment == 10.0
bad_stuff = doc[-2:]
assert bad_stuff.sentiment == 10.0
good_stuff_bad = doc[:-1]
assert good_stuff_bad.sentiment == 10.0