mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Draft up Parser model
This commit is contained in:
parent
ccaf26206b
commit
7d1df50aec
96
spacy/_ml.py
Normal file
96
spacy/_ml.py
Normal file
|
@ -0,0 +1,96 @@
|
|||
from thinc.api import layerize, chain, clone, concatenate, add
|
||||
from thinc.neural import Model, Maxout, Softmax
|
||||
from thinc.neural._classes.static_vectors import StaticVectors
|
||||
from thinc.neural._classes.hash_embed import HashEmbed
|
||||
from thinc.neural._classes.convolution import ExtractWindow
|
||||
|
||||
from .attrs import ID, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
||||
|
||||
|
||||
@layerize
|
||||
def get_contexts(states, drop=0.):
|
||||
ops = Model.ops
|
||||
context = ops.allocate((len(states), 7), dtype='uint64')
|
||||
for i, state in enumerate(states):
|
||||
context[i, 0] = state.B(0)
|
||||
context[i, 1] = state.S(0)
|
||||
context[i, 2] = state.S(1)
|
||||
context[i, 3] = state.L(state.S(0), 1)
|
||||
context[i, 4] = state.L(state.S(0), 2)
|
||||
context[i, 5] = state.R(state.S(0), 1)
|
||||
context[i, 6] = state.R(state.S(0), 2)
|
||||
return (context, states), None
|
||||
|
||||
def get_col(idx):
|
||||
def forward(X, drop=0.):
|
||||
return Model.ops.xp.ascontiguousarray(X[:, idx]), None
|
||||
return layerize(forward)
|
||||
|
||||
|
||||
def extract_features(attrs):
|
||||
ops = Model.ops
|
||||
def forward(contexts_states, drop=0.):
|
||||
contexts, states = contexts_states
|
||||
output = ops.allocate((len(states), contexts.shape[1], len(attrs)),
|
||||
dtype='uint64')
|
||||
for i, state in enumerate(states):
|
||||
for j, tok_i in enumerate(contexts[i]):
|
||||
token = state.get_token(tok_i)
|
||||
for k, attr in enumerate(attrs):
|
||||
output[i, j, k] = getattr(token, attr)
|
||||
return output, None
|
||||
return layerize(forward)
|
||||
|
||||
|
||||
def build_tok2vec(lang, width, depth, embed_size):
|
||||
cols = [ID, PREFIX, SUFFIX, SHAPE]
|
||||
|
||||
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone}):
|
||||
static = get_col(cols.index(ID)) >> StaticVectors('en', width)
|
||||
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size)
|
||||
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size)
|
||||
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size)
|
||||
tok2vec = (
|
||||
extract_features(cols)
|
||||
>> (static | prefix | suffix | shape)
|
||||
>> (ExtractWindow(nW=1) >> Maxout(width)) ** depth
|
||||
)
|
||||
return tok2vec
|
||||
|
||||
|
||||
def build_parse2vec(width, embed_size):
|
||||
cols = [TAG, DEP]
|
||||
with Model.define_operators({'>>': chain, '|': concatenate}):
|
||||
tag_vector = get_col(cols.index(TAG)) >> HashEmbed(width, 1000)
|
||||
dep_vector = get_col(cols.index(DEP)) >> HashEmbed(width, 1000)
|
||||
model = (
|
||||
extract_features([TAG, DEP])
|
||||
>> (tag_vector | dep_vector)
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def build_model(state2context, tok2vec, parse2vec, width, depth, nr_class):
|
||||
with Model.define_operators({'>>': chain, '**': clone, '|': concatenate}):
|
||||
model = (
|
||||
state2context
|
||||
>> (tok2vec | parse2vec)
|
||||
>> Maxout(width) ** depth
|
||||
>> Softmax(nr_class)
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def test_build_model(width=100, depth=2, nr_class=10):
|
||||
model = build_model(
|
||||
get_contexts,
|
||||
build_tok2vec('en', width=100, depth=2, embed_size=1000),
|
||||
build_parse2vec(width=100, embed_size=1000),
|
||||
width,
|
||||
depth,
|
||||
nr_class)
|
||||
assert model is not None
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_build_model()
|
Loading…
Reference in New Issue
Block a user