mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-12 17:22:25 +03:00
Move factories to their own file
This commit is contained in:
parent
0b82521d49
commit
7dd064a089
935
spacy/pipeline/factories.py
Normal file
935
spacy/pipeline/factories.py
Normal file
|
@ -0,0 +1,935 @@
|
|||
from typing import Dict, Any, Callable, Iterable, List, Optional, Union, Tuple
|
||||
from thinc.api import Model
|
||||
from thinc.types import Floats2d, Ragged
|
||||
from ..tokens.doc import Doc
|
||||
from ..tokens.span import Span
|
||||
from ..kb import KnowledgeBase, Candidate
|
||||
from ..vocab import Vocab
|
||||
from ..pipeline.textcat import TextCategorizer
|
||||
from ..pipeline.tok2vec import Tok2Vec
|
||||
from ..pipeline.spancat import SpanCategorizer, Suggester
|
||||
from ..pipeline.textcat_multilabel import MultiLabel_TextCategorizer
|
||||
from ..pipeline.entityruler import EntityRuler
|
||||
from ..pipeline.span_finder import SpanFinder
|
||||
from ..pipeline.ner import EntityRecognizer
|
||||
from ..pipeline._parser_internals.transition_system import TransitionSystem
|
||||
from ..pipeline.dep_parser import DependencyParser
|
||||
from ..pipeline.tagger import Tagger
|
||||
from ..pipeline.multitask import MultitaskObjective
|
||||
from ..pipeline.senter import SentenceRecognizer
|
||||
from ..language import Language
|
||||
from ..pipeline.sentencizer import Sentencizer
|
||||
|
||||
# Import factory default configurations
|
||||
from ..pipeline.entity_linker import DEFAULT_NEL_MODEL
|
||||
from ..pipeline.entityruler import DEFAULT_ENT_ID_SEP
|
||||
from ..pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
||||
from ..pipeline.senter import DEFAULT_SENTER_MODEL
|
||||
from ..pipeline.morphologizer import DEFAULT_MORPH_MODEL
|
||||
from ..pipeline.spancat import (
|
||||
DEFAULT_SPANCAT_MODEL,
|
||||
DEFAULT_SPANCAT_SINGLELABEL_MODEL,
|
||||
DEFAULT_SPANS_KEY,
|
||||
)
|
||||
from ..pipeline.span_ruler import DEFAULT_SPANS_KEY as SPAN_RULER_DEFAULT_SPANS_KEY
|
||||
from ..pipeline.edit_tree_lemmatizer import DEFAULT_EDIT_TREE_LEMMATIZER_MODEL
|
||||
from ..pipeline.textcat_multilabel import DEFAULT_MULTI_TEXTCAT_MODEL
|
||||
from ..pipeline.span_finder import DEFAULT_SPAN_FINDER_MODEL
|
||||
from ..pipeline.ner import DEFAULT_NER_MODEL
|
||||
from ..pipeline.dep_parser import DEFAULT_PARSER_MODEL
|
||||
from ..pipeline.tagger import DEFAULT_TAGGER_MODEL
|
||||
from ..pipeline.multitask import DEFAULT_MT_MODEL
|
||||
from ..pipeline.textcat import DEFAULT_SINGLE_TEXTCAT_MODEL
|
||||
from ..pipeline.entity_linker import EntityLinker, EntityLinker_v1
|
||||
from ..pipeline.attributeruler import AttributeRuler
|
||||
from ..pipeline.lemmatizer import Lemmatizer
|
||||
from ..pipeline.functions import TokenSplitter
|
||||
from ..pipeline.functions import DocCleaner
|
||||
from ..pipeline.span_ruler import (
|
||||
SpanRuler,
|
||||
prioritize_new_ents_filter,
|
||||
prioritize_existing_ents_filter,
|
||||
)
|
||||
from ..pipeline.edit_tree_lemmatizer import EditTreeLemmatizer
|
||||
from ..pipeline.morphologizer import Morphologizer
|
||||
|
||||
|
||||
# Global flag to track if factories have been registered
|
||||
FACTORIES_REGISTERED = False
|
||||
|
||||
|
||||
def register_factories() -> None:
|
||||
"""Register all factories with the registry.
|
||||
|
||||
This function registers all pipeline component factories, centralizing
|
||||
the registrations that were previously done with @Language.factory decorators.
|
||||
"""
|
||||
global FACTORIES_REGISTERED
|
||||
|
||||
if FACTORIES_REGISTERED:
|
||||
return
|
||||
|
||||
# Register factories using the same pattern as Language.factory decorator
|
||||
# We use Language.factory()() pattern which exactly mimics the decorator
|
||||
|
||||
# attributeruler
|
||||
Language.factory(
|
||||
"attribute_ruler",
|
||||
default_config={
|
||||
"validate": False,
|
||||
"scorer": {"@scorers": "spacy.attribute_ruler_scorer.v1"},
|
||||
},
|
||||
)(make_attribute_ruler)
|
||||
|
||||
# entity_linker
|
||||
Language.factory(
|
||||
"entity_linker",
|
||||
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
|
||||
assigns=["token.ent_kb_id"],
|
||||
default_config={
|
||||
"model": DEFAULT_NEL_MODEL,
|
||||
"labels_discard": [],
|
||||
"n_sents": 0,
|
||||
"incl_prior": True,
|
||||
"incl_context": True,
|
||||
"entity_vector_length": 64,
|
||||
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
|
||||
"get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
|
||||
"generate_empty_kb": {"@misc": "spacy.EmptyKB.v2"},
|
||||
"overwrite": True,
|
||||
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
|
||||
"use_gold_ents": True,
|
||||
"candidates_batch_size": 1,
|
||||
"threshold": None,
|
||||
},
|
||||
default_score_weights={
|
||||
"nel_micro_f": 1.0,
|
||||
"nel_micro_r": None,
|
||||
"nel_micro_p": None,
|
||||
},
|
||||
)(make_entity_linker)
|
||||
|
||||
# entity_ruler
|
||||
Language.factory(
|
||||
"entity_ruler",
|
||||
assigns=["doc.ents", "token.ent_type", "token.ent_iob"],
|
||||
default_config={
|
||||
"phrase_matcher_attr": None,
|
||||
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
||||
"validate": False,
|
||||
"overwrite_ents": False,
|
||||
"ent_id_sep": DEFAULT_ENT_ID_SEP,
|
||||
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
"ents_f": 1.0,
|
||||
"ents_p": 0.0,
|
||||
"ents_r": 0.0,
|
||||
"ents_per_type": None,
|
||||
},
|
||||
)(make_entity_ruler)
|
||||
|
||||
# lemmatizer
|
||||
Language.factory(
|
||||
"lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
default_config={
|
||||
"model": None,
|
||||
"mode": "lookup",
|
||||
"overwrite": False,
|
||||
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
||||
},
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)(make_lemmatizer)
|
||||
|
||||
# textcat
|
||||
Language.factory(
|
||||
"textcat",
|
||||
assigns=["doc.cats"],
|
||||
default_config={
|
||||
"threshold": 0.0,
|
||||
"model": DEFAULT_SINGLE_TEXTCAT_MODEL,
|
||||
"scorer": {"@scorers": "spacy.textcat_scorer.v2"},
|
||||
},
|
||||
default_score_weights={
|
||||
"cats_score": 1.0,
|
||||
"cats_score_desc": None,
|
||||
"cats_micro_p": None,
|
||||
"cats_micro_r": None,
|
||||
"cats_micro_f": None,
|
||||
"cats_macro_p": None,
|
||||
"cats_macro_r": None,
|
||||
"cats_macro_f": None,
|
||||
"cats_macro_auc": None,
|
||||
"cats_f_per_type": None,
|
||||
},
|
||||
)(make_textcat)
|
||||
|
||||
# token_splitter
|
||||
Language.factory(
|
||||
"token_splitter",
|
||||
default_config={"min_length": 25, "split_length": 10},
|
||||
retokenizes=True,
|
||||
)(make_token_splitter)
|
||||
|
||||
# doc_cleaner
|
||||
Language.factory(
|
||||
"doc_cleaner",
|
||||
default_config={"attrs": {"tensor": None, "_.trf_data": None}, "silent": True},
|
||||
)(make_doc_cleaner)
|
||||
|
||||
# tok2vec
|
||||
Language.factory(
|
||||
"tok2vec",
|
||||
assigns=["doc.tensor"],
|
||||
default_config={"model": DEFAULT_TOK2VEC_MODEL},
|
||||
)(make_tok2vec)
|
||||
|
||||
# senter
|
||||
Language.factory(
|
||||
"senter",
|
||||
assigns=["token.is_sent_start"],
|
||||
default_config={
|
||||
"model": DEFAULT_SENTER_MODEL,
|
||||
"overwrite": False,
|
||||
"scorer": {"@scorers": "spacy.senter_scorer.v1"},
|
||||
},
|
||||
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
||||
)(make_senter)
|
||||
|
||||
# morphologizer
|
||||
Language.factory(
|
||||
"morphologizer",
|
||||
assigns=["token.morph", "token.pos"],
|
||||
default_config={
|
||||
"model": DEFAULT_MORPH_MODEL,
|
||||
"overwrite": True,
|
||||
"extend": False,
|
||||
"scorer": {"@scorers": "spacy.morphologizer_scorer.v1"},
|
||||
"label_smoothing": 0.0,
|
||||
},
|
||||
default_score_weights={
|
||||
"pos_acc": 0.5,
|
||||
"morph_acc": 0.5,
|
||||
"morph_per_feat": None,
|
||||
},
|
||||
)(make_morphologizer)
|
||||
|
||||
# spancat
|
||||
Language.factory(
|
||||
"spancat",
|
||||
assigns=["doc.spans"],
|
||||
default_config={
|
||||
"threshold": 0.5,
|
||||
"spans_key": DEFAULT_SPANS_KEY,
|
||||
"max_positive": None,
|
||||
"model": DEFAULT_SPANCAT_MODEL,
|
||||
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
||||
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
||||
},
|
||||
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
|
||||
)(make_spancat)
|
||||
|
||||
# spancat_singlelabel
|
||||
Language.factory(
|
||||
"spancat_singlelabel",
|
||||
assigns=["doc.spans"],
|
||||
default_config={
|
||||
"spans_key": DEFAULT_SPANS_KEY,
|
||||
"model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
|
||||
"negative_weight": 1.0,
|
||||
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
||||
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
||||
"allow_overlap": True,
|
||||
},
|
||||
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
|
||||
)(make_spancat_singlelabel)
|
||||
|
||||
# future_entity_ruler
|
||||
Language.factory(
|
||||
"future_entity_ruler",
|
||||
assigns=["doc.ents"],
|
||||
default_config={
|
||||
"phrase_matcher_attr": None,
|
||||
"validate": False,
|
||||
"overwrite_ents": False,
|
||||
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
|
||||
"ent_id_sep": "__unused__",
|
||||
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
"ents_f": 1.0,
|
||||
"ents_p": 0.0,
|
||||
"ents_r": 0.0,
|
||||
"ents_per_type": None,
|
||||
},
|
||||
)(make_future_entity_ruler)
|
||||
|
||||
# span_ruler
|
||||
Language.factory(
|
||||
"span_ruler",
|
||||
assigns=["doc.spans"],
|
||||
default_config={
|
||||
"spans_key": SPAN_RULER_DEFAULT_SPANS_KEY,
|
||||
"spans_filter": None,
|
||||
"annotate_ents": False,
|
||||
"ents_filter": {"@misc": "spacy.first_longest_spans_filter.v1"},
|
||||
"phrase_matcher_attr": None,
|
||||
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
||||
"validate": False,
|
||||
"overwrite": True,
|
||||
"scorer": {
|
||||
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
|
||||
"spans_key": SPAN_RULER_DEFAULT_SPANS_KEY,
|
||||
},
|
||||
},
|
||||
default_score_weights={
|
||||
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_f": 1.0,
|
||||
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_p": 0.0,
|
||||
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_r": 0.0,
|
||||
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_per_type": None,
|
||||
},
|
||||
)(make_span_ruler)
|
||||
|
||||
# trainable_lemmatizer
|
||||
Language.factory(
|
||||
"trainable_lemmatizer",
|
||||
assigns=["token.lemma"],
|
||||
requires=[],
|
||||
default_config={
|
||||
"model": DEFAULT_EDIT_TREE_LEMMATIZER_MODEL,
|
||||
"backoff": "orth",
|
||||
"min_tree_freq": 3,
|
||||
"overwrite": False,
|
||||
"top_k": 1,
|
||||
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
||||
},
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)(make_edit_tree_lemmatizer)
|
||||
|
||||
# textcat_multilabel
|
||||
Language.factory(
|
||||
"textcat_multilabel",
|
||||
assigns=["doc.cats"],
|
||||
default_config={
|
||||
"threshold": 0.5,
|
||||
"model": DEFAULT_MULTI_TEXTCAT_MODEL,
|
||||
"scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v2"},
|
||||
},
|
||||
default_score_weights={
|
||||
"cats_score": 1.0,
|
||||
"cats_score_desc": None,
|
||||
"cats_micro_p": None,
|
||||
"cats_micro_r": None,
|
||||
"cats_micro_f": None,
|
||||
"cats_macro_p": None,
|
||||
"cats_macro_r": None,
|
||||
"cats_macro_f": None,
|
||||
"cats_macro_auc": None,
|
||||
"cats_f_per_type": None,
|
||||
},
|
||||
)(make_multilabel_textcat)
|
||||
|
||||
# span_finder
|
||||
Language.factory(
|
||||
"span_finder",
|
||||
assigns=["doc.spans"],
|
||||
default_config={
|
||||
"threshold": 0.5,
|
||||
"model": DEFAULT_SPAN_FINDER_MODEL,
|
||||
"spans_key": DEFAULT_SPANS_KEY,
|
||||
"max_length": 25,
|
||||
"min_length": None,
|
||||
"scorer": {"@scorers": "spacy.span_finder_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
|
||||
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
|
||||
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
|
||||
},
|
||||
)(make_span_finder)
|
||||
|
||||
# ner
|
||||
Language.factory(
|
||||
"ner",
|
||||
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
|
||||
default_config={
|
||||
"moves": None,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"model": DEFAULT_NER_MODEL,
|
||||
"incorrect_spans_key": None,
|
||||
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
"ents_f": 1.0,
|
||||
"ents_p": 0.0,
|
||||
"ents_r": 0.0,
|
||||
"ents_per_type": None,
|
||||
},
|
||||
)(make_ner)
|
||||
|
||||
# beam_ner
|
||||
Language.factory(
|
||||
"beam_ner",
|
||||
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
|
||||
default_config={
|
||||
"moves": None,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"model": DEFAULT_NER_MODEL,
|
||||
"beam_density": 0.01,
|
||||
"beam_update_prob": 0.5,
|
||||
"beam_width": 32,
|
||||
"incorrect_spans_key": None,
|
||||
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
"ents_f": 1.0,
|
||||
"ents_p": 0.0,
|
||||
"ents_r": 0.0,
|
||||
"ents_per_type": None,
|
||||
},
|
||||
)(make_beam_ner)
|
||||
|
||||
# parser
|
||||
Language.factory(
|
||||
"parser",
|
||||
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
|
||||
default_config={
|
||||
"moves": None,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
"model": DEFAULT_PARSER_MODEL,
|
||||
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
"dep_uas": 0.5,
|
||||
"dep_las": 0.5,
|
||||
"dep_las_per_type": None,
|
||||
"sents_p": None,
|
||||
"sents_r": None,
|
||||
"sents_f": 0.0,
|
||||
},
|
||||
)(make_parser)
|
||||
|
||||
# beam_parser
|
||||
Language.factory(
|
||||
"beam_parser",
|
||||
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
|
||||
default_config={
|
||||
"moves": None,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
"beam_width": 8,
|
||||
"beam_density": 0.0001,
|
||||
"beam_update_prob": 0.5,
|
||||
"model": DEFAULT_PARSER_MODEL,
|
||||
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
|
||||
},
|
||||
default_score_weights={
|
||||
"dep_uas": 0.5,
|
||||
"dep_las": 0.5,
|
||||
"dep_las_per_type": None,
|
||||
"sents_p": None,
|
||||
"sents_r": None,
|
||||
"sents_f": 0.0,
|
||||
},
|
||||
)(make_beam_parser)
|
||||
|
||||
# tagger
|
||||
Language.factory(
|
||||
"tagger",
|
||||
assigns=["token.tag"],
|
||||
default_config={
|
||||
"model": DEFAULT_TAGGER_MODEL,
|
||||
"overwrite": False,
|
||||
"scorer": {"@scorers": "spacy.tagger_scorer.v1"},
|
||||
"neg_prefix": "!",
|
||||
"label_smoothing": 0.0,
|
||||
},
|
||||
default_score_weights={
|
||||
"tag_acc": 1.0,
|
||||
"pos_acc": 0.0,
|
||||
"tag_micro_p": None,
|
||||
"tag_micro_r": None,
|
||||
"tag_micro_f": None,
|
||||
},
|
||||
)(make_tagger)
|
||||
|
||||
# nn_labeller
|
||||
Language.factory(
|
||||
"nn_labeller",
|
||||
default_config={
|
||||
"labels": None,
|
||||
"target": "dep_tag_offset",
|
||||
"model": DEFAULT_MT_MODEL,
|
||||
},
|
||||
)(make_nn_labeller)
|
||||
|
||||
# sentencizer
|
||||
Language.factory(
|
||||
"sentencizer",
|
||||
assigns=["token.is_sent_start", "doc.sents"],
|
||||
default_config={
|
||||
"punct_chars": None,
|
||||
"overwrite": False,
|
||||
"scorer": {"@scorers": "spacy.senter_scorer.v1"},
|
||||
},
|
||||
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
||||
)(make_sentencizer)
|
||||
|
||||
# Set the flag to indicate that all factories have been registered
|
||||
FACTORIES_REGISTERED = True
|
||||
|
||||
|
||||
# We can't have function implementations for these factories in Cython, because
|
||||
# we need to build a Pydantic model for them dynamically, reading their argument
|
||||
# structure from the signature. In Cython 3, this doesn't work because the
|
||||
# from __future__ import annotations semantics are used, which means the types
|
||||
# are stored as strings.
|
||||
def make_sentencizer(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
punct_chars: Optional[List[str]],
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return Sentencizer(
|
||||
name, punct_chars=punct_chars, overwrite=overwrite, scorer=scorer
|
||||
)
|
||||
|
||||
|
||||
def make_attribute_ruler(
|
||||
nlp: Language, name: str, validate: bool, scorer: Optional[Callable]
|
||||
):
|
||||
return AttributeRuler(nlp.vocab, name, validate=validate, scorer=scorer)
|
||||
|
||||
|
||||
def make_entity_linker(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
*,
|
||||
labels_discard: Iterable[str],
|
||||
n_sents: int,
|
||||
incl_prior: bool,
|
||||
incl_context: bool,
|
||||
entity_vector_length: int,
|
||||
get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
|
||||
get_candidates_batch: Callable[
|
||||
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
|
||||
],
|
||||
generate_empty_kb: Callable[[Vocab, int], KnowledgeBase],
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
use_gold_ents: bool,
|
||||
candidates_batch_size: int,
|
||||
threshold: Optional[float] = None,
|
||||
):
|
||||
|
||||
if not model.attrs.get("include_span_maker", False):
|
||||
# The only difference in arguments here is that use_gold_ents and threshold aren't available.
|
||||
return EntityLinker_v1(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
labels_discard=labels_discard,
|
||||
n_sents=n_sents,
|
||||
incl_prior=incl_prior,
|
||||
incl_context=incl_context,
|
||||
entity_vector_length=entity_vector_length,
|
||||
get_candidates=get_candidates,
|
||||
overwrite=overwrite,
|
||||
scorer=scorer,
|
||||
)
|
||||
return EntityLinker(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
labels_discard=labels_discard,
|
||||
n_sents=n_sents,
|
||||
incl_prior=incl_prior,
|
||||
incl_context=incl_context,
|
||||
entity_vector_length=entity_vector_length,
|
||||
get_candidates=get_candidates,
|
||||
get_candidates_batch=get_candidates_batch,
|
||||
generate_empty_kb=generate_empty_kb,
|
||||
overwrite=overwrite,
|
||||
scorer=scorer,
|
||||
use_gold_ents=use_gold_ents,
|
||||
candidates_batch_size=candidates_batch_size,
|
||||
threshold=threshold,
|
||||
)
|
||||
|
||||
|
||||
def make_lemmatizer(
|
||||
nlp: Language,
|
||||
model: Optional[Model],
|
||||
name: str,
|
||||
mode: str,
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return Lemmatizer(
|
||||
nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
|
||||
)
|
||||
|
||||
|
||||
def make_textcat(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model[List[Doc], List[Floats2d]],
|
||||
threshold: float,
|
||||
scorer: Optional[Callable],
|
||||
) -> TextCategorizer:
|
||||
return TextCategorizer(nlp.vocab, model, name, threshold=threshold, scorer=scorer)
|
||||
|
||||
|
||||
def make_token_splitter(
|
||||
nlp: Language, name: str, *, min_length: int = 0, split_length: int = 0
|
||||
):
|
||||
return TokenSplitter(min_length=min_length, split_length=split_length)
|
||||
|
||||
|
||||
def make_doc_cleaner(nlp: Language, name: str, *, attrs: Dict[str, Any], silent: bool):
|
||||
return DocCleaner(attrs, silent=silent)
|
||||
|
||||
|
||||
def make_tok2vec(nlp: Language, name: str, model: Model) -> Tok2Vec:
|
||||
return Tok2Vec(nlp.vocab, model, name)
|
||||
|
||||
|
||||
def make_spancat(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
suggester: Suggester,
|
||||
model: Model[Tuple[List[Doc], Ragged], Floats2d],
|
||||
spans_key: str,
|
||||
scorer: Optional[Callable],
|
||||
threshold: float,
|
||||
max_positive: Optional[int],
|
||||
) -> SpanCategorizer:
|
||||
return SpanCategorizer(
|
||||
nlp.vocab,
|
||||
model=model,
|
||||
suggester=suggester,
|
||||
name=name,
|
||||
spans_key=spans_key,
|
||||
negative_weight=None,
|
||||
allow_overlap=True,
|
||||
max_positive=max_positive,
|
||||
threshold=threshold,
|
||||
scorer=scorer,
|
||||
add_negative_label=False,
|
||||
)
|
||||
|
||||
|
||||
def make_spancat_singlelabel(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
suggester: Suggester,
|
||||
model: Model[Tuple[List[Doc], Ragged], Floats2d],
|
||||
spans_key: str,
|
||||
negative_weight: float,
|
||||
allow_overlap: bool,
|
||||
scorer: Optional[Callable],
|
||||
) -> SpanCategorizer:
|
||||
return SpanCategorizer(
|
||||
nlp.vocab,
|
||||
model=model,
|
||||
suggester=suggester,
|
||||
name=name,
|
||||
spans_key=spans_key,
|
||||
negative_weight=negative_weight,
|
||||
allow_overlap=allow_overlap,
|
||||
max_positive=1,
|
||||
add_negative_label=True,
|
||||
threshold=None,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_future_entity_ruler(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
phrase_matcher_attr: Optional[Union[int, str]],
|
||||
matcher_fuzzy_compare: Callable,
|
||||
validate: bool,
|
||||
overwrite_ents: bool,
|
||||
scorer: Optional[Callable],
|
||||
ent_id_sep: str,
|
||||
):
|
||||
if overwrite_ents:
|
||||
ents_filter = prioritize_new_ents_filter
|
||||
else:
|
||||
ents_filter = prioritize_existing_ents_filter
|
||||
return SpanRuler(
|
||||
nlp,
|
||||
name,
|
||||
spans_key=None,
|
||||
spans_filter=None,
|
||||
annotate_ents=True,
|
||||
ents_filter=ents_filter,
|
||||
phrase_matcher_attr=phrase_matcher_attr,
|
||||
matcher_fuzzy_compare=matcher_fuzzy_compare,
|
||||
validate=validate,
|
||||
overwrite=False,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_entity_ruler(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
phrase_matcher_attr: Optional[Union[int, str]],
|
||||
matcher_fuzzy_compare: Callable,
|
||||
validate: bool,
|
||||
overwrite_ents: bool,
|
||||
ent_id_sep: str,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return EntityRuler(
|
||||
nlp,
|
||||
name,
|
||||
phrase_matcher_attr=phrase_matcher_attr,
|
||||
matcher_fuzzy_compare=matcher_fuzzy_compare,
|
||||
validate=validate,
|
||||
overwrite_ents=overwrite_ents,
|
||||
ent_id_sep=ent_id_sep,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_span_ruler(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
spans_key: Optional[str],
|
||||
spans_filter: Optional[Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]]],
|
||||
annotate_ents: bool,
|
||||
ents_filter: Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]],
|
||||
phrase_matcher_attr: Optional[Union[int, str]],
|
||||
matcher_fuzzy_compare: Callable,
|
||||
validate: bool,
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return SpanRuler(
|
||||
nlp,
|
||||
name,
|
||||
spans_key=spans_key,
|
||||
spans_filter=spans_filter,
|
||||
annotate_ents=annotate_ents,
|
||||
ents_filter=ents_filter,
|
||||
phrase_matcher_attr=phrase_matcher_attr,
|
||||
matcher_fuzzy_compare=matcher_fuzzy_compare,
|
||||
validate=validate,
|
||||
overwrite=overwrite,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_edit_tree_lemmatizer(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
backoff: Optional[str],
|
||||
min_tree_freq: int,
|
||||
overwrite: bool,
|
||||
top_k: int,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return EditTreeLemmatizer(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
backoff=backoff,
|
||||
min_tree_freq=min_tree_freq,
|
||||
overwrite=overwrite,
|
||||
top_k=top_k,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_multilabel_textcat(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model[List[Doc], List[Floats2d]],
|
||||
threshold: float,
|
||||
scorer: Optional[Callable],
|
||||
) -> MultiLabel_TextCategorizer:
|
||||
return MultiLabel_TextCategorizer(
|
||||
nlp.vocab, model, name, threshold=threshold, scorer=scorer
|
||||
)
|
||||
|
||||
|
||||
def make_span_finder(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model[Iterable[Doc], Floats2d],
|
||||
spans_key: str,
|
||||
threshold: float,
|
||||
max_length: Optional[int],
|
||||
min_length: Optional[int],
|
||||
scorer: Optional[Callable],
|
||||
) -> SpanFinder:
|
||||
return SpanFinder(
|
||||
nlp,
|
||||
model=model,
|
||||
threshold=threshold,
|
||||
name=name,
|
||||
scorer=scorer,
|
||||
max_length=max_length,
|
||||
min_length=min_length,
|
||||
spans_key=spans_key,
|
||||
)
|
||||
|
||||
|
||||
def make_ner(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
moves: Optional[TransitionSystem],
|
||||
update_with_oracle_cut_size: int,
|
||||
incorrect_spans_key: Optional[str],
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return EntityRecognizer(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name=name,
|
||||
moves=moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
incorrect_spans_key=incorrect_spans_key,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_beam_ner(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
moves: Optional[TransitionSystem],
|
||||
update_with_oracle_cut_size: int,
|
||||
beam_width: int,
|
||||
beam_density: float,
|
||||
beam_update_prob: float,
|
||||
incorrect_spans_key: Optional[str],
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return EntityRecognizer(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name=name,
|
||||
moves=moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
beam_width=beam_width,
|
||||
beam_density=beam_density,
|
||||
beam_update_prob=beam_update_prob,
|
||||
incorrect_spans_key=incorrect_spans_key,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_parser(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
moves: Optional[TransitionSystem],
|
||||
update_with_oracle_cut_size: int,
|
||||
learn_tokens: bool,
|
||||
min_action_freq: int,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return DependencyParser(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name=name,
|
||||
moves=moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
learn_tokens=learn_tokens,
|
||||
min_action_freq=min_action_freq,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_beam_parser(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
moves: Optional[TransitionSystem],
|
||||
update_with_oracle_cut_size: int,
|
||||
learn_tokens: bool,
|
||||
min_action_freq: int,
|
||||
beam_width: int,
|
||||
beam_density: float,
|
||||
beam_update_prob: float,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return DependencyParser(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name=name,
|
||||
moves=moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
learn_tokens=learn_tokens,
|
||||
min_action_freq=min_action_freq,
|
||||
beam_width=beam_width,
|
||||
beam_density=beam_density,
|
||||
beam_update_prob=beam_update_prob,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_tagger(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
overwrite: bool,
|
||||
scorer: Optional[Callable],
|
||||
neg_prefix: str,
|
||||
label_smoothing: float,
|
||||
):
|
||||
return Tagger(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name=name,
|
||||
overwrite=overwrite,
|
||||
scorer=scorer,
|
||||
neg_prefix=neg_prefix,
|
||||
label_smoothing=label_smoothing,
|
||||
)
|
||||
|
||||
|
||||
def make_nn_labeller(
|
||||
nlp: Language, name: str, model: Model, labels: Optional[dict], target: str
|
||||
):
|
||||
return MultitaskObjective(nlp.vocab, model, name, target=target)
|
||||
|
||||
|
||||
def make_morphologizer(
|
||||
nlp: Language,
|
||||
model: Model,
|
||||
name: str,
|
||||
overwrite: bool,
|
||||
extend: bool,
|
||||
label_smoothing: float,
|
||||
scorer: Optional[Callable],
|
||||
):
|
||||
return Morphologizer(
|
||||
nlp.vocab,
|
||||
model,
|
||||
name,
|
||||
overwrite=overwrite,
|
||||
extend=extend,
|
||||
label_smoothing=label_smoothing,
|
||||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
def make_senter(
|
||||
nlp: Language, name: str, model: Model, overwrite: bool, scorer: Optional[Callable]
|
||||
):
|
||||
return SentenceRecognizer(
|
||||
nlp.vocab, model, name, overwrite=overwrite, scorer=scorer
|
||||
)
|
Loading…
Reference in New Issue
Block a user