mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Turkish language syntax iterators (#6191)
* added tr_vocab to config * basic test * added syntax iterator to Turkish lang class * first version for Turkish syntax iter, without flat * added simple tests with nmod, amod, det * more tests to amod and nmod * separated noun chunks and parser test * rearrangement after nchunk parser separation * added recursive NPs * tests with complicated recursive NPs * tests with conjed NPs * additional tests for conj NP * small modification for shaving off conj from NP * added tests with flat * more tests with flat * added examples with flats conjed * added inner func for flat trick * corrected parse Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
This commit is contained in:
parent
2ce6fc2611
commit
7e821c2776
|
@ -3,9 +3,11 @@ from __future__ import unicode_literals
|
|||
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from .stop_words import STOP_WORDS
|
||||
from .syntax_iterators import SYNTAX_ITERATORS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .morph_rules import MORPH_RULES
|
||||
|
||||
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
from ..norm_exceptions import BASE_NORMS
|
||||
from ...language import Language
|
||||
|
@ -22,6 +24,7 @@ class TurkishDefaults(Language.Defaults):
|
|||
)
|
||||
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
|
||||
stop_words = STOP_WORDS
|
||||
syntax_iterators = SYNTAX_ITERATORS
|
||||
morph_rules = MORPH_RULES
|
||||
|
||||
|
||||
|
|
59
spacy/lang/tr/syntax_iterators.py
Normal file
59
spacy/lang/tr/syntax_iterators.py
Normal file
|
@ -0,0 +1,59 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from ...symbols import NOUN, PROPN, PRON
|
||||
from ...errors import Errors
|
||||
|
||||
|
||||
def noun_chunks(doclike):
|
||||
"""
|
||||
Detect base noun phrases from a dependency parse. Works on both Doc and Span.
|
||||
"""
|
||||
# Please see documentation for Turkish NP structure
|
||||
labels = [
|
||||
"nsubj",
|
||||
"iobj",
|
||||
"obj",
|
||||
"obl",
|
||||
"appos",
|
||||
"orphan",
|
||||
"dislocated",
|
||||
"ROOT",
|
||||
]
|
||||
doc = doclike.doc # Ensure works on both Doc and Span.
|
||||
if not doc.is_parsed:
|
||||
raise ValueError(Errors.E029)
|
||||
|
||||
np_deps = [doc.vocab.strings.add(label) for label in labels]
|
||||
conj = doc.vocab.strings.add("conj")
|
||||
flat = doc.vocab.strings.add("flat")
|
||||
np_label = doc.vocab.strings.add("NP")
|
||||
|
||||
def extend_right(w): # Playing a trick for flat
|
||||
rindex = w.i + 1
|
||||
for rdep in doc[w.i].rights: # Extend the span to right if there is a flat
|
||||
if rdep.dep == flat and rdep.pos in (NOUN, PROPN):
|
||||
rindex = rdep.i + 1
|
||||
else:
|
||||
break
|
||||
return rindex
|
||||
|
||||
prev_end = len(doc) + 1
|
||||
for i, word in reversed(list(enumerate(doclike))):
|
||||
if word.pos not in (NOUN, PROPN, PRON):
|
||||
continue
|
||||
# Prevent nested chunks from being produced
|
||||
if word.i >= prev_end:
|
||||
continue
|
||||
if word.dep in np_deps:
|
||||
prev_end = word.left_edge.i
|
||||
yield word.left_edge.i, extend_right(word), np_label
|
||||
elif word.dep == conj:
|
||||
cc_token = word.left_edge
|
||||
prev_end = cc_token.i
|
||||
yield cc_token.right_edge.i + 1, extend_right(word), np_label # Shave off cc tokens from the NP
|
||||
|
||||
|
||||
|
||||
|
||||
SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}
|
|
@ -242,6 +242,9 @@ def th_tokenizer():
|
|||
def tr_tokenizer():
|
||||
return get_lang_class("tr").Defaults.create_tokenizer()
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def tr_vocab():
|
||||
return get_lang_class("tr").Defaults.create_vocab()
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def tt_tokenizer():
|
||||
|
|
16
spacy/tests/lang/tr/test_noun_chunks.py
Normal file
16
spacy/tests/lang/tr/test_noun_chunks.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def test_noun_chunks_is_parsed(tr_tokenizer):
|
||||
"""Test that noun_chunks raises Value Error for 'tr' language if Doc is not parsed.
|
||||
To check this test, we're constructing a Doc
|
||||
with a new Vocab here and forcing is_parsed to 'False'
|
||||
to make sure the noun chunks don't run.
|
||||
"""
|
||||
doc = tr_tokenizer("Dün seni gördüm.")
|
||||
doc.is_parsed = False
|
||||
with pytest.raises(ValueError):
|
||||
list(doc.noun_chunks)
|
573
spacy/tests/lang/tr/test_parser.py
Normal file
573
spacy/tests/lang/tr/test_parser.py
Normal file
|
@ -0,0 +1,573 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from ...util import get_doc
|
||||
|
||||
|
||||
def test_tr_noun_chunks_amod_simple(tr_tokenizer):
|
||||
text = "sarı kedi"
|
||||
heads = [1, 0]
|
||||
deps = ["amod", "ROOT"]
|
||||
tags = ["ADJ", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "sarı kedi "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_nmod_simple(tr_tokenizer):
|
||||
text = "arkadaşımın kedisi" # my friend's cat
|
||||
heads = [1, 0]
|
||||
deps = ["nmod", "ROOT"]
|
||||
tags = ["NOUN", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "arkadaşımın kedisi "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_determiner_simple(tr_tokenizer):
|
||||
text = "O kedi" # that cat
|
||||
heads = [1, 0]
|
||||
deps = ["det", "ROOT"]
|
||||
tags = ["DET", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "O kedi "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_nmod_amod(tr_tokenizer):
|
||||
text = "okulun eski müdürü"
|
||||
heads = [2, 1, 0]
|
||||
deps = ["nmod", "amod", "ROOT"]
|
||||
tags = ["NOUN", "ADJ", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "okulun eski müdürü "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_one_det_one_adj_simple(tr_tokenizer):
|
||||
text = "O sarı kedi"
|
||||
heads = [2, 1, 0]
|
||||
deps = ["det", "amod", "ROOT"]
|
||||
tags = ["DET", "ADJ", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "O sarı kedi "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_two_adjs_simple(tr_tokenizer):
|
||||
text = "beyaz tombik kedi"
|
||||
heads = [2, 1, 0]
|
||||
deps = ["amod", "amod", "ROOT"]
|
||||
tags = ["ADJ", "ADJ", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "beyaz tombik kedi "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_one_det_two_adjs_simple(tr_tokenizer):
|
||||
text = "o beyaz tombik kedi"
|
||||
heads = [3, 2, 1, 0]
|
||||
deps = ["det", "amod", "amod", "ROOT"]
|
||||
tags = ["DET", "ADJ", "ADJ", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "o beyaz tombik kedi "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_nmod_two(tr_tokenizer):
|
||||
text = "kızın saçının rengi"
|
||||
heads = [1, 1, 0]
|
||||
deps = ["nmod", "nmod", "ROOT"]
|
||||
tags = ["NOUN", "NOUN", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "kızın saçının rengi "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_chain_nmod_with_adj(tr_tokenizer):
|
||||
text = "ev sahibinin tatlı köpeği"
|
||||
heads = [1, 2, 1, 0]
|
||||
deps = ["nmod", "nmod", "amod", "ROOT"]
|
||||
tags = ["NOUN", "NOUN", "ADJ", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "ev sahibinin tatlı köpeği "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_chain_nmod_with_acl(tr_tokenizer):
|
||||
text = "ev sahibinin gelen köpeği"
|
||||
heads = [1, 2, 1, 0]
|
||||
deps = ["nmod", "nmod", "acl", "ROOT"]
|
||||
tags = ["NOUN", "NOUN", "VERB", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "ev sahibinin gelen köpeği "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_chain_nmod_head_with_amod_acl(tr_tokenizer):
|
||||
text = "arabanın kırdığım sol aynası"
|
||||
heads = [3, 2, 1, 0]
|
||||
deps = ["nmod", "acl", "amod", "ROOT"]
|
||||
tags = ["NOUN", "VERB", "ADJ", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "arabanın kırdığım sol aynası "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_nmod_three(tr_tokenizer):
|
||||
text = "güney Afrika ülkelerinden Mozambik"
|
||||
heads = [1, 1, 1, 0]
|
||||
deps = ["nmod", "nmod", "nmod", "ROOT"]
|
||||
tags = ["NOUN", "PROPN", "NOUN", "PROPN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "güney Afrika ülkelerinden Mozambik "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_det_amod_nmod(tr_tokenizer):
|
||||
text = "bazı eski oyun kuralları"
|
||||
heads = [3, 2, 1, 0]
|
||||
deps = ["det", "nmod", "nmod", "ROOT"]
|
||||
tags = ["DET", "ADJ", "NOUN", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "bazı eski oyun kuralları "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_acl_simple(tr_tokenizer):
|
||||
text = "bahçesi olan okul"
|
||||
heads = [2, -1, 0]
|
||||
deps = ["acl", "cop", "ROOT"]
|
||||
tags = ["NOUN", "AUX", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "bahçesi olan okul "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_acl_verb(tr_tokenizer):
|
||||
text = "sevdiğim sanatçılar"
|
||||
heads = [1, 0]
|
||||
deps = ["acl", "ROOT"]
|
||||
tags = ["VERB", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "sevdiğim sanatçılar "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_acl_nmod(tr_tokenizer):
|
||||
text = "en sevdiğim ses sanatçısı"
|
||||
heads = [1, 2, 1, 0]
|
||||
deps = ["advmod", "acl", "nmod", "ROOT"]
|
||||
tags = ["ADV", "VERB", "NOUN", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "en sevdiğim ses sanatçısı "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_acl_nmod(tr_tokenizer):
|
||||
text = "bildiğim bir turizm şirketi"
|
||||
heads = [3, 2, 1, 0]
|
||||
deps = ["acl", "det", "nmod", "ROOT"]
|
||||
tags = ["VERB", "DET", "NOUN", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "bildiğim bir turizm şirketi "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_np_recursive_nsubj_to_root(tr_tokenizer):
|
||||
text = "Simge'nin okuduğu kitap"
|
||||
heads = [1, 1, 0]
|
||||
deps = ["nsubj", "acl", "ROOT"]
|
||||
tags = ["PROPN", "VERB", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "Simge'nin okuduğu kitap "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_np_recursive_nsubj_attached_to_pron_root(tr_tokenizer):
|
||||
text = "Simge'nin konuşabileceği birisi"
|
||||
heads = [1, 1, 0]
|
||||
deps = ["nsubj", "acl", "ROOT"]
|
||||
tags = ["PROPN", "VERB", "PRON"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "Simge'nin konuşabileceği birisi "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_np_recursive_nsubj_in_subnp(tr_tokenizer):
|
||||
text = "Simge'nin yarın gideceği yer"
|
||||
heads = [2, 1, 1, 0]
|
||||
deps = ["nsubj", "obl", "acl", "ROOT"]
|
||||
tags = ["PROPN", "NOUN", "VERB", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "Simge'nin yarın gideceği yer "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_np_recursive_two_nmods(tr_tokenizer):
|
||||
text = "ustanın kapısını degiştireceği çamasır makinası"
|
||||
heads = [2, 1, 2, 1, 0]
|
||||
deps = ["nsubj", "obj", "acl", "nmod", "ROOT"]
|
||||
tags = ["NOUN", "NOUN", "VERB", "NOUN", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "ustanın kapısını degiştireceği çamasır makinası "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_np_recursive_four_nouns(tr_tokenizer):
|
||||
text = "kızına piyano dersi verdiğim hanım"
|
||||
heads = [3, 1, 1, 1, 0]
|
||||
deps = ["obl", "nmod", "obj", "acl", "ROOT"]
|
||||
tags = ["NOUN", "NOUN", "NOUN", "VERB", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "kızına piyano dersi verdiğim hanım "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_np_recursive_no_nmod(tr_tokenizer):
|
||||
text = "içine birkaç çiçek konmuş olan bir vazo"
|
||||
heads = [3, 1, 1, 3, -1, 1, 0]
|
||||
deps = ["obl", "det", "nsubj", "acl", "aux", "det", "ROOT"]
|
||||
tags = ["ADP", "DET", "NOUN", "VERB", "AUX", "DET", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "içine birkaç çiçek konmuş olan bir vazo "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_np_recursive_long_two_acls(tr_tokenizer):
|
||||
text = "içine Simge'nin bahçesinden toplanmış birkaç çiçeğin konmuş olduğu bir vazo"
|
||||
heads = [6, 1, 1, 2, 1, 1, 3, -1, 1, 0]
|
||||
deps = ["obl", "nmod" , "obl", "acl", "det", "nsubj", "acl", "aux", "det", "ROOT"]
|
||||
tags = ["ADP", "PROPN", "NOUN", "VERB", "DET", "NOUN", "VERB", "AUX", "DET", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "içine Simge'nin bahçesinden toplanmış birkaç çiçeğin konmuş olduğu bir vazo "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_two_nouns_in_nmod(tr_tokenizer):
|
||||
text = "kız ve erkek çocuklar"
|
||||
heads = [3, 1, -2, 0]
|
||||
deps = ["nmod", "cc", "conj", "ROOT"]
|
||||
tags = ["NOUN", "CCONJ", "NOUN", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "kız ve erkek çocuklar "
|
||||
|
||||
def test_tr_noun_chunks_two_nouns_in_nmod(tr_tokenizer):
|
||||
text = "tatlı ve gürbüz çocuklar"
|
||||
heads = [3, 1, -2, 0]
|
||||
deps = ["amod", "cc", "conj", "ROOT"]
|
||||
tags = ["ADJ", "CCONJ", "NOUN", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "tatlı ve gürbüz çocuklar "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_conj_simple(tr_tokenizer):
|
||||
text = "Sen ya da ben"
|
||||
heads = [0, 2, -1, -3]
|
||||
deps = ["ROOT", "cc", "fixed", "conj"]
|
||||
tags = ["PRON", "CCONJ", "CCONJ", "PRON"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 2
|
||||
assert chunks[0].text_with_ws == "ben "
|
||||
assert chunks[1].text_with_ws == "Sen "
|
||||
|
||||
def test_tr_noun_chunks_conj_three(tr_tokenizer):
|
||||
text = "sen, ben ve ondan"
|
||||
heads = [0, 1, -2, 1, -4]
|
||||
deps = ["ROOT", "punct", "conj", "cc", "conj"]
|
||||
tags = ["PRON", "PUNCT", "PRON", "CCONJ", "PRON"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 3
|
||||
assert chunks[0].text_with_ws == "ondan "
|
||||
assert chunks[1].text_with_ws == "ben "
|
||||
assert chunks[2].text_with_ws == "sen "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_conj_three(tr_tokenizer):
|
||||
text = "ben ya da sen ya da onlar"
|
||||
heads = [0, 2, -1, -3, 2, -1, -3]
|
||||
deps = ["ROOT", "cc", "fixed", "conj", "cc", "fixed", "conj"]
|
||||
tags = ["PRON", "CCONJ", "CCONJ", "PRON", "CCONJ", "CCONJ", "PRON"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 3
|
||||
assert chunks[0].text_with_ws == "onlar "
|
||||
assert chunks[1].text_with_ws == "sen "
|
||||
assert chunks[2].text_with_ws == "ben "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_conj_and_adj_phrase(tr_tokenizer):
|
||||
text = "ben ve akıllı çocuk"
|
||||
heads = [0, 2, 1, -3]
|
||||
deps = ["ROOT", "cc", "amod", "conj"]
|
||||
tags = ["PRON", "CCONJ", "ADJ", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 2
|
||||
assert chunks[0].text_with_ws == "akıllı çocuk "
|
||||
assert chunks[1].text_with_ws == "ben "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_conj_fixed_adj_phrase(tr_tokenizer):
|
||||
text = "ben ya da akıllı çocuk"
|
||||
heads = [0, 3, -1, 1, -4]
|
||||
deps = ["ROOT", "cc", "fixed", "amod", "conj"]
|
||||
tags = ["PRON", "CCONJ", "CCONJ", "ADJ", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 2
|
||||
assert chunks[0].text_with_ws == "akıllı çocuk "
|
||||
assert chunks[1].text_with_ws == "ben "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_conj_subject(tr_tokenizer):
|
||||
text = "Sen ve ben iyi anlaşıyoruz"
|
||||
heads = [4, 1, -2, -1, 0]
|
||||
deps = ["nsubj", "cc", "conj", "adv", "ROOT"]
|
||||
tags = ["PRON", "CCONJ", "PRON", "ADV", "VERB"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 2
|
||||
assert chunks[0].text_with_ws == "ben "
|
||||
assert chunks[1].text_with_ws == "Sen "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_conj_noun_head_verb(tr_tokenizer):
|
||||
text = "Simge babasını görmüyormuş, annesini değil"
|
||||
heads = [2, 1, 0, 1, -2, -1]
|
||||
deps = ["nsubj", "obj", "ROOT", "punct", "conj", "aux"]
|
||||
tags = ["PROPN", "NOUN", "VERB", "PUNCT", "NOUN", "AUX"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 3
|
||||
assert chunks[0].text_with_ws == "annesini "
|
||||
assert chunks[1].text_with_ws == "babasını "
|
||||
assert chunks[2].text_with_ws == "Simge "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_flat_simple(tr_tokenizer):
|
||||
text = "New York"
|
||||
heads = [0, -1]
|
||||
deps = ["ROOT", "flat"]
|
||||
tags = ["PROPN", "PROPN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "New York "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_flat_names_and_title(tr_tokenizer):
|
||||
text = "Gazi Mustafa Kemal"
|
||||
heads = [1, 0, -1]
|
||||
deps = ["nmod", "ROOT", "flat"]
|
||||
tags = ["PROPN", "PROPN", "PROPN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "Gazi Mustafa Kemal "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_flat_names_and_title(tr_tokenizer):
|
||||
text = "Ahmet Vefik Paşa"
|
||||
heads = [2, -1, 0]
|
||||
deps = ["nmod", "flat", "ROOT"]
|
||||
tags = ["PROPN", "PROPN", "PROPN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "Ahmet Vefik Paşa "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_flat_name_lastname_and_title(tr_tokenizer):
|
||||
text = "Cumhurbaşkanı Ahmet Necdet Sezer"
|
||||
heads = [1, 0, -1, -2]
|
||||
deps = ["nmod", "ROOT", "flat", "flat"]
|
||||
tags = ["NOUN", "PROPN", "PROPN", "PROPN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "Cumhurbaşkanı Ahmet Necdet Sezer "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_flat_in_nmod(tr_tokenizer):
|
||||
text = "Ahmet Sezer adında bir ögrenci"
|
||||
heads = [2, -1, 2, 1, 0]
|
||||
deps = ["nmod", "flat", "nmod", "det", "ROOT"]
|
||||
tags = ["PROPN", "PROPN", "NOUN", "DET", "NOUN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "Ahmet Sezer adında bir ögrenci "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_flat_and_chain_nmod(tr_tokenizer):
|
||||
text = "Batı Afrika ülkelerinden Sierra Leone"
|
||||
heads = [1, 1, 1, 0, -1]
|
||||
deps = ["nmod", "nmod", "nmod", "ROOT", "flat"]
|
||||
tags = ["NOUN", "PROPN", "NOUN", "PROPN", "PROPN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "Batı Afrika ülkelerinden Sierra Leone "
|
||||
|
||||
|
||||
def test_tr_noun_chunks_two_flats_conjed(tr_tokenizer):
|
||||
text = "New York ve Sierra Leone"
|
||||
heads = [0, -1, 1, -3, -1]
|
||||
deps = ["ROOT", "flat", "cc", "conj", "flat"]
|
||||
tags = ["PROPN", "PROPN", "CCONJ", "PROPN", "PROPN"]
|
||||
tokens = tr_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], tags=tags, heads=heads, deps=deps
|
||||
)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 2
|
||||
assert chunks[0].text_with_ws == "Sierra Leone "
|
||||
assert chunks[1].text_with_ws == "New York "
|
Loading…
Reference in New Issue
Block a user