mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-24 16:24:16 +03:00
Merge pull request #8522 from adrianeboyd/chore/update-flake8
Update flake8 version in reqs and CI
This commit is contained in:
commit
7f65902702
|
@ -28,7 +28,7 @@ jobs:
|
|||
inputs:
|
||||
versionSpec: "3.7"
|
||||
- script: |
|
||||
pip install flake8==3.5.0
|
||||
pip install flake8==3.9.2
|
||||
python -m flake8 spacy --count --select=E901,E999,F821,F822,F823 --show-source --statistics
|
||||
displayName: "flake8"
|
||||
|
||||
|
|
|
@ -26,5 +26,5 @@ cython>=0.25,<3.0
|
|||
pytest>=5.2.0
|
||||
pytest-timeout>=1.3.0,<2.0.0
|
||||
mock>=2.0.0,<3.0.0
|
||||
flake8>=3.5.0,<3.6.0
|
||||
flake8>=3.8.0,<3.10.0
|
||||
hypothesis>=3.27.0,<7.0.0
|
||||
|
|
|
@ -6,6 +6,7 @@ from thinc.api import Model, Maxout, Linear
|
|||
from ...util import registry
|
||||
from ...kb import KnowledgeBase, Candidate, get_candidates
|
||||
from ...vocab import Vocab
|
||||
from ...tokens import Span
|
||||
|
||||
|
||||
@registry.architectures("spacy.EntityLinker.v1")
|
||||
|
@ -44,5 +45,5 @@ def empty_kb(entity_vector_length: int) -> Callable[[Vocab], KnowledgeBase]:
|
|||
|
||||
|
||||
@registry.misc("spacy.CandidateGenerator.v1")
|
||||
def create_candidates() -> Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]:
|
||||
def create_candidates() -> Callable[[KnowledgeBase, Span], Iterable[Candidate]]:
|
||||
return get_candidates
|
||||
|
|
|
@ -9,7 +9,7 @@ import warnings
|
|||
|
||||
from ..kb import KnowledgeBase, Candidate
|
||||
from ..ml import empty_kb
|
||||
from ..tokens import Doc
|
||||
from ..tokens import Doc, Span
|
||||
from .pipe import deserialize_config
|
||||
from .trainable_pipe import TrainablePipe
|
||||
from ..language import Language
|
||||
|
@ -67,7 +67,7 @@ def make_entity_linker(
|
|||
incl_prior: bool,
|
||||
incl_context: bool,
|
||||
entity_vector_length: int,
|
||||
get_candidates: Callable[[KnowledgeBase, "Span"], Iterable[Candidate]],
|
||||
get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
|
||||
):
|
||||
"""Construct an EntityLinker component.
|
||||
|
||||
|
@ -114,7 +114,7 @@ class EntityLinker(TrainablePipe):
|
|||
incl_prior: bool,
|
||||
incl_context: bool,
|
||||
entity_vector_length: int,
|
||||
get_candidates: Callable[[KnowledgeBase, "Span"], Iterable[Candidate]],
|
||||
get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
|
||||
) -> None:
|
||||
"""Initialize an entity linker.
|
||||
|
||||
|
@ -127,7 +127,7 @@ class EntityLinker(TrainablePipe):
|
|||
incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
|
||||
incl_context (bool): Whether or not to include the local context in the model.
|
||||
entity_vector_length (int): Size of encoding vectors in the KB.
|
||||
get_candidates (Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]): Function that
|
||||
get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that
|
||||
produces a list of candidates, given a certain knowledge base and a textual mention.
|
||||
|
||||
DOCS: https://spacy.io/api/entitylinker#init
|
||||
|
|
|
@ -4,7 +4,7 @@ from enum import Enum
|
|||
from pydantic import BaseModel, Field, ValidationError, validator, create_model
|
||||
from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool
|
||||
from pydantic.main import ModelMetaclass
|
||||
from thinc.api import Optimizer, ConfigValidationError
|
||||
from thinc.api import Optimizer, ConfigValidationError, Model
|
||||
from thinc.config import Promise
|
||||
from collections import defaultdict
|
||||
import inspect
|
||||
|
@ -17,6 +17,7 @@ if TYPE_CHECKING:
|
|||
# This lets us add type hints for mypy etc. without causing circular imports
|
||||
from .language import Language # noqa: F401
|
||||
from .training import Example # noqa: F401
|
||||
from .vocab import Vocab # noqa: F401
|
||||
|
||||
|
||||
# fmt: off
|
||||
|
@ -354,7 +355,7 @@ class ConfigSchemaPretrain(BaseModel):
|
|||
batcher: Batcher = Field(..., title="Batcher for the training data")
|
||||
component: str = Field(..., title="Component to find the layer to pretrain")
|
||||
layer: str = Field(..., title="Layer to pretrain. Whole model if empty.")
|
||||
objective: Callable[["Vocab", "Model"], "Model"] = Field(..., title="A function that creates the pretraining objective.")
|
||||
objective: Callable[["Vocab", Model], Model] = Field(..., title="A function that creates the pretraining objective.")
|
||||
# fmt: on
|
||||
|
||||
class Config:
|
||||
|
|
|
@ -3,6 +3,7 @@ from typing import Callable
|
|||
from spacy import util
|
||||
from spacy.util import ensure_path, registry, load_model_from_config
|
||||
from spacy.kb import KnowledgeBase
|
||||
from spacy.vocab import Vocab
|
||||
from thinc.api import Config
|
||||
|
||||
from ..util import make_tempdir
|
||||
|
@ -111,7 +112,7 @@ def test_serialize_subclassed_kb():
|
|||
@registry.misc("spacy.CustomKB.v1")
|
||||
def custom_kb(
|
||||
entity_vector_length: int, custom_field: int
|
||||
) -> Callable[["Vocab"], KnowledgeBase]:
|
||||
) -> Callable[[Vocab], KnowledgeBase]:
|
||||
def custom_kb_factory(vocab):
|
||||
kb = SubKnowledgeBase(
|
||||
vocab=vocab,
|
||||
|
|
Loading…
Reference in New Issue
Block a user