* Experiment with Zipfian corruptions when calculating prediction

This commit is contained in:
Matthew Honnibal 2015-05-26 22:17:15 +02:00
parent 32ae2cdabe
commit 7fc24821bc
2 changed files with 12 additions and 80 deletions

View File

@ -3,7 +3,7 @@ from libc.stdint cimport uint8_t
from cymem.cymem cimport Pool
from thinc.learner cimport LinearModel
from thinc.features cimport Extractor
from thinc.features cimport Extractor, Feature
from thinc.typedefs cimport atom_t, feat_t, weight_t, class_t
from preshed.maps cimport PreshMapArray
@ -17,6 +17,8 @@ cdef int arg_max(const weight_t* scores, const int n_classes) nogil
cdef class Model:
cdef int n_classes
cdef int regularize(self, Feature* feats, int n, int a=*) except -1
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1
@ -24,21 +26,10 @@ cdef class Model:
cdef Extractor _extractor
cdef LinearModel _model
cdef inline const weight_t* score(self, atom_t* context) except NULL:
cdef inline const weight_t* score(self, atom_t* context, bint regularize) except NULL:
cdef int n_feats
feats = self._extractor.get_feats(context, &n_feats)
if regularize:
self.regularize(feats, n_feats, 3)
return self._model.get_scores(feats, n_feats)
cdef class HastyModel:
cdef Pool mem
cdef weight_t* _scores
cdef const weight_t* score(self, atom_t* context) except NULL
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1
cdef int n_classes
cdef Model _hasty
cdef Model _full
cdef readonly int hasty_cnt
cdef readonly int full_cnt

View File

@ -4,9 +4,9 @@ from __future__ import division
from os import path
import os
import shutil
import random
import json
import cython
import numpy.random
from thinc.features cimport Feature, count_feats
@ -44,70 +44,11 @@ cdef class Model:
count_feats(counts[guess], feats, n_feats, -cost)
self._model.update(counts)
cdef int regularize(self, Feature* feats, int n, int a=3) except -1:
zipfs = numpy.random.zipf(a, n)
for i in range(n):
feats[i].value *= 1.0 / zipfs[i]
def end_training(self):
self._model.end_training()
self._model.dump(self.model_loc, freq_thresh=0)
cdef class HastyModel:
def __init__(self, n_classes, hasty_templates, full_templates, model_dir):
full_templates = tuple([t for t in full_templates if t not in hasty_templates])
self.mem = Pool()
self.n_classes = n_classes
self._scores = <weight_t*>self.mem.alloc(self.n_classes, sizeof(weight_t))
assert path.exists(model_dir)
assert path.isdir(model_dir)
self._hasty = Model(n_classes, hasty_templates, path.join(model_dir, 'hasty_model'))
self._full = Model(n_classes, full_templates, path.join(model_dir, 'full_model'))
self.hasty_cnt = 0
self.full_cnt = 0
cdef const weight_t* score(self, atom_t* context) except NULL:
cdef int i
hasty_scores = self._hasty.score(context)
if will_use_hasty(hasty_scores, self._hasty.n_classes):
self.hasty_cnt += 1
return hasty_scores
else:
self.full_cnt += 1
full_scores = self._full.score(context)
for i in range(self.n_classes):
self._scores[i] = full_scores[i] + hasty_scores[i]
return self._scores
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1:
self._hasty.update(context, guess, gold, cost)
self._full.update(context, guess, gold, cost)
def end_training(self):
self._hasty.end_training()
self._full.end_training()
@cython.cdivision(True)
cdef bint will_use_hasty(const weight_t* scores, int n_classes) nogil:
cdef:
weight_t best_score, second_score
int best, second
if scores[0] >= scores[1]:
best = 0
best_score = scores[0]
second = 1
second_score = scores[1]
else:
best = 1
best_score = scores[1]
second = 0
second_score = scores[0]
cdef int i
for i in range(2, n_classes):
if scores[i] > best_score:
second_score = best_score
second = best
best = i
best_score = scores[i]
elif scores[i] > second_score:
second_score = scores[i]
second = i
return best_score > 0 and second_score < (best_score / 2)