mirror of
https://github.com/explosion/spaCy.git
synced 2025-04-21 17:41:59 +03:00
Re-add Candidate to setup.py.
This commit is contained in:
parent
48744b02b1
commit
7ff3d94c9c
1
setup.py
1
setup.py
|
@ -30,6 +30,7 @@ MOD_NAMES = [
|
|||
"spacy.lexeme",
|
||||
"spacy.vocab",
|
||||
"spacy.attrs",
|
||||
"spacy.kb.candidate",
|
||||
"spacy.kb.kb",
|
||||
"spacy.kb.kb_in_memory",
|
||||
"spacy.ml.tb_framework",
|
||||
|
|
|
@ -1,116 +0,0 @@
|
|||
import abc
|
||||
from typing import List, Union, Callable
|
||||
|
||||
from ..errors import Errors
|
||||
|
||||
|
||||
class Candidate(abc.ABC):
|
||||
"""A `Candidate` object refers to a textual mention that may or may not be resolved
|
||||
to a specific `entity_id` from a Knowledge Base. This will be used as input for the entity_id linking
|
||||
algorithm which will disambiguate the various candidates to the correct one.
|
||||
Each candidate (mention, entity_id) pair is assigned a certain prior probability.
|
||||
|
||||
DOCS: https://spacy.io/api/kb/#candidate-init
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
mention: str,
|
||||
entity_id: Union[str, int],
|
||||
entity_vector: List[float],
|
||||
prior_prob: float,
|
||||
):
|
||||
"""Initializes properties of `Candidate` instance.
|
||||
mention (str): Mention text for this candidate.
|
||||
entity_id (Union[str, int]): Unique entity ID.
|
||||
entity_vector (List[float]): Entity embedding.
|
||||
prior_prob (float): Prior probability of entity for this mention - i.e. the probability that, independent of
|
||||
the context, this mention resolves to this entity_id in the corpus used to build the knowledge base. In
|
||||
cases in which this isn't always possible (e.g.: the corpus to analyse contains mentions that the KB corpus
|
||||
doesn't) it might be better to eschew this information and always supply the same value.
|
||||
"""
|
||||
self._mention = mention
|
||||
self._entity_id = entity_id
|
||||
# Note that hashing an int value yields the same int value.
|
||||
self._entity_id_hash = hash(entity_id)
|
||||
self._entity_vector = entity_vector
|
||||
self._prior_prob = prior_prob
|
||||
|
||||
@property
|
||||
def entity_id(self) -> Union[str, int]:
|
||||
"""RETURNS (Union[str, int]): Unique entity ID."""
|
||||
return self._entity_id
|
||||
|
||||
@property
|
||||
def entity_id_int(self) -> int:
|
||||
"""RETURNS (int): Numerical representation of entity ID (if entity ID is numerical, this is just the entity ID,
|
||||
otherwise the hash of the entity ID string)."""
|
||||
return self._entity_id_hash
|
||||
|
||||
@property
|
||||
def entity_id_str(self) -> str:
|
||||
"""RETURNS (str): String representation of entity ID."""
|
||||
return str(self._entity_id)
|
||||
|
||||
@property
|
||||
def mention(self) -> str:
|
||||
"""RETURNS (str): Mention."""
|
||||
return self._mention
|
||||
|
||||
@property
|
||||
def entity_vector(self) -> List[float]:
|
||||
"""RETURNS (List[float]): Entity vector."""
|
||||
return self._entity_vector
|
||||
|
||||
@property
|
||||
def prior_prob(self) -> float:
|
||||
"""RETURNS (List[float]): Entity vector."""
|
||||
return self._prior_prob
|
||||
|
||||
|
||||
class InMemoryCandidate(Candidate):
|
||||
"""Candidate for InMemoryLookupKB."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hash_to_str: Callable[[int], str],
|
||||
entity_id: int,
|
||||
mention: str,
|
||||
entity_vector: List[float],
|
||||
prior_prob: float,
|
||||
entity_freq: int,
|
||||
):
|
||||
"""
|
||||
hash_to_str (Callable[[int], str]): Callable retrieving entity name from provided entity/vocab hash.
|
||||
entity_id (str): Entity ID as hash that can be looked up with InMemoryKB.vocab.strings.__getitem__().
|
||||
entity_freq (int): Entity frequency in KB corpus.
|
||||
entity_vector (List[float]): Entity embedding.
|
||||
mention (str): Mention.
|
||||
prior_prob (float): Prior probability of entity for this mention - i.e. the probability that, independent of
|
||||
the context, this mention resolves to this entity_id in the corpus used to build the knowledge base. In
|
||||
cases in which this isn't always possible (e.g.: the corpus to analyse contains mentions that the KB corpus
|
||||
doesn't) it might be better to eschew this information and always supply the same value.
|
||||
"""
|
||||
super().__init__(
|
||||
mention=mention,
|
||||
entity_id=entity_id,
|
||||
entity_vector=entity_vector,
|
||||
prior_prob=prior_prob,
|
||||
)
|
||||
self._hash_to_str = hash_to_str
|
||||
self._entity_freq = entity_freq
|
||||
if not isinstance(self._entity_id, int):
|
||||
raise ValueError(
|
||||
Errors.E4005.format(should_type="int", is_type=str(type(entity_id)))
|
||||
)
|
||||
self._entity_id_str = self._hash_to_str(self._entity_id)
|
||||
|
||||
@property
|
||||
def entity_freq(self) -> float:
|
||||
"""RETURNS (float): Relative entity frequency."""
|
||||
return self._entity_freq
|
||||
|
||||
@property
|
||||
def entity_id_str(self) -> str:
|
||||
"""RETURNS (str): String representation of entity ID."""
|
||||
return self._entity_id_str
|
Loading…
Reference in New Issue
Block a user