mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
Add PretrainableMaxouts
This commit is contained in:
parent
2e2268a442
commit
807cb2e370
58
spacy/_ml.py
58
spacy/_ml.py
|
@ -61,6 +61,64 @@ class PrecomputableAffine(Model):
|
||||||
return Yf, backward
|
return Yf, backward
|
||||||
|
|
||||||
|
|
||||||
|
@describe.on_data(_set_dimensions_if_needed)
|
||||||
|
@describe.attributes(
|
||||||
|
nI=Dimension("Input size"),
|
||||||
|
nF=Dimension("Number of features"),
|
||||||
|
nP=Dimension("Number of pieces"),
|
||||||
|
nO=Dimension("Output size"),
|
||||||
|
W=Synapses("Weights matrix",
|
||||||
|
lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI),
|
||||||
|
lambda W, ops: ops.xavier_uniform_init(W)),
|
||||||
|
b=Biases("Bias vector",
|
||||||
|
lambda obj: (obj.nO, obj.nP)),
|
||||||
|
d_W=Gradient("W"),
|
||||||
|
d_b=Gradient("b")
|
||||||
|
)
|
||||||
|
class PrecomputableMaxouts(Model):
|
||||||
|
def __init__(self, nO=None, nI=None, nF=None, pieces=2, **kwargs):
|
||||||
|
Model.__init__(self, **kwargs)
|
||||||
|
self.nO = nO
|
||||||
|
self.nP = pieces
|
||||||
|
self.nI = nI
|
||||||
|
self.nF = nF
|
||||||
|
|
||||||
|
def begin_update(self, X, drop=0.):
|
||||||
|
# X: (b, i)
|
||||||
|
# Yfp: (f, b, o, p)
|
||||||
|
# Yf: (f, b, o)
|
||||||
|
# Xf: (b, f, i)
|
||||||
|
# dY: (b, o)
|
||||||
|
# dYp: (b, o, p)
|
||||||
|
# W: (f, o, p, i)
|
||||||
|
# b: (o, p)
|
||||||
|
|
||||||
|
Yfp = numpy.einsum('bi,fopi->fbop', X, self.W)
|
||||||
|
Yfp += self.b
|
||||||
|
Yf = self.ops.allocate((self.nF, X.shape[0], self.nO))
|
||||||
|
which = self.ops.allocate((self.nF, X.shape[0], self.nO), dtype='i')
|
||||||
|
for i in range(self.nF):
|
||||||
|
Yf[i], which[i] = self.ops.maxout(Yfp[i])
|
||||||
|
def backward(dY_ids, sgd=None):
|
||||||
|
dY, ids = dY_ids
|
||||||
|
Xf = X[ids]
|
||||||
|
dYp = self.ops.allocate((dY.shape[0], self.nO, self.nP))
|
||||||
|
for i in range(self.nF):
|
||||||
|
dYp += self.ops.backprop_maxout(dY, which[i], self.nP)
|
||||||
|
|
||||||
|
dXf = numpy.einsum('bop,fopi->bfi', dYp, self.W)
|
||||||
|
dW = numpy.einsum('bop,bfi->fopi', dYp, Xf)
|
||||||
|
db = dYp.sum(axis=0)
|
||||||
|
|
||||||
|
self.d_W += dW
|
||||||
|
self.d_b += db
|
||||||
|
|
||||||
|
if sgd is not None:
|
||||||
|
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
||||||
|
return dXf
|
||||||
|
return Yf, backward
|
||||||
|
|
||||||
|
|
||||||
def get_col(idx):
|
def get_col(idx):
|
||||||
def forward(X, drop=0.):
|
def forward(X, drop=0.):
|
||||||
assert len(X.shape) <= 3
|
assert len(X.shape) <= 3
|
||||||
|
|
Loading…
Reference in New Issue
Block a user