mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 02:36:32 +03:00
Add PretrainableMaxouts
This commit is contained in:
parent
2e2268a442
commit
807cb2e370
58
spacy/_ml.py
58
spacy/_ml.py
|
@ -61,6 +61,64 @@ class PrecomputableAffine(Model):
|
|||
return Yf, backward
|
||||
|
||||
|
||||
@describe.on_data(_set_dimensions_if_needed)
|
||||
@describe.attributes(
|
||||
nI=Dimension("Input size"),
|
||||
nF=Dimension("Number of features"),
|
||||
nP=Dimension("Number of pieces"),
|
||||
nO=Dimension("Output size"),
|
||||
W=Synapses("Weights matrix",
|
||||
lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI),
|
||||
lambda W, ops: ops.xavier_uniform_init(W)),
|
||||
b=Biases("Bias vector",
|
||||
lambda obj: (obj.nO, obj.nP)),
|
||||
d_W=Gradient("W"),
|
||||
d_b=Gradient("b")
|
||||
)
|
||||
class PrecomputableMaxouts(Model):
|
||||
def __init__(self, nO=None, nI=None, nF=None, pieces=2, **kwargs):
|
||||
Model.__init__(self, **kwargs)
|
||||
self.nO = nO
|
||||
self.nP = pieces
|
||||
self.nI = nI
|
||||
self.nF = nF
|
||||
|
||||
def begin_update(self, X, drop=0.):
|
||||
# X: (b, i)
|
||||
# Yfp: (f, b, o, p)
|
||||
# Yf: (f, b, o)
|
||||
# Xf: (b, f, i)
|
||||
# dY: (b, o)
|
||||
# dYp: (b, o, p)
|
||||
# W: (f, o, p, i)
|
||||
# b: (o, p)
|
||||
|
||||
Yfp = numpy.einsum('bi,fopi->fbop', X, self.W)
|
||||
Yfp += self.b
|
||||
Yf = self.ops.allocate((self.nF, X.shape[0], self.nO))
|
||||
which = self.ops.allocate((self.nF, X.shape[0], self.nO), dtype='i')
|
||||
for i in range(self.nF):
|
||||
Yf[i], which[i] = self.ops.maxout(Yfp[i])
|
||||
def backward(dY_ids, sgd=None):
|
||||
dY, ids = dY_ids
|
||||
Xf = X[ids]
|
||||
dYp = self.ops.allocate((dY.shape[0], self.nO, self.nP))
|
||||
for i in range(self.nF):
|
||||
dYp += self.ops.backprop_maxout(dY, which[i], self.nP)
|
||||
|
||||
dXf = numpy.einsum('bop,fopi->bfi', dYp, self.W)
|
||||
dW = numpy.einsum('bop,bfi->fopi', dYp, Xf)
|
||||
db = dYp.sum(axis=0)
|
||||
|
||||
self.d_W += dW
|
||||
self.d_b += db
|
||||
|
||||
if sgd is not None:
|
||||
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
||||
return dXf
|
||||
return Yf, backward
|
||||
|
||||
|
||||
def get_col(idx):
|
||||
def forward(X, drop=0.):
|
||||
assert len(X.shape) <= 3
|
||||
|
|
Loading…
Reference in New Issue
Block a user