Merge branch 'develop' of https://github.com/explosion/spaCy into develop

This commit is contained in:
Matthew Honnibal 2017-10-11 02:47:59 -05:00
commit 807e109f2b
10 changed files with 84 additions and 20 deletions

View File

@ -311,7 +311,7 @@ def link_vectors_to_models(vocab):
def Tok2Vec(width, embed_size, **kwargs):
pretrained_dims = kwargs.get('pretrained_dims', 0)
cnn_maxout_pieces = kwargs.get('cnn_maxout_pieces', 3)
cnn_maxout_pieces = kwargs.get('cnn_maxout_pieces', 2)
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add,
'*': reapply}):

View File

@ -68,6 +68,8 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=10, n_sents=0,
if not isinstance(meta, dict):
prints("Expected dict but got: {}".format(type(meta)),
title="Not a valid meta.json format", exits=1)
meta.setdefault('lang', lang)
meta.setdefault('name', 'unnamed')
pipeline = ['tagger', 'parser', 'ner']
if no_tagger and 'tagger' in pipeline: pipeline.remove('tagger')
@ -89,6 +91,8 @@ def train(cmd, lang, output_dir, train_data, dev_data, n_iter=10, n_sents=0,
lang_class = util.get_lang_class(lang)
nlp = lang_class()
meta['pipeline'] = pipeline
nlp.meta.update(meta)
if vectors:
util.load_model(vectors, vocab=nlp.vocab)
for name in pipeline:

View File

@ -24,6 +24,8 @@ class Lemmatizer(object):
univ_pos = 'adj'
elif univ_pos == PUNCT:
univ_pos = 'punct'
else:
return set([string.lower()])
# See Issue #435 for example of where this logic is requied.
if self.is_base_form(univ_pos, morphology):
return set([string.lower()])

View File

@ -35,6 +35,8 @@ cdef class Morphology:
cdef RichTagC* rich_tags
cdef PreshMapArray _cache
cdef int assign_untagged(self, TokenC* token) except -1
cdef int assign_tag(self, TokenC* token, tag) except -1
cdef int assign_tag_id(self, TokenC* token, int tag_id) except -1

View File

@ -42,7 +42,7 @@ cdef class Morphology:
self.tag_names = tuple(sorted(tag_map.keys()))
self.reverse_index = {}
self.rich_tags = <RichTagC*>self.mem.alloc(self.n_tags, sizeof(RichTagC))
self.rich_tags = <RichTagC*>self.mem.alloc(self.n_tags+1, sizeof(RichTagC))
for i, (tag_str, attrs) in enumerate(sorted(tag_map.items())):
self.tag_map[tag_str] = dict(attrs)
attrs = _normalize_props(attrs)
@ -52,6 +52,10 @@ cdef class Morphology:
self.rich_tags[i].morph = 0
self.rich_tags[i].pos = attrs[POS]
self.reverse_index[self.rich_tags[i].name] = i
# Add a 'null' tag, which we can reference when assign morphology to
# untagged tokens.
self.rich_tags[self.n_tags].id = self.n_tags
self._cache = PreshMapArray(self.n_tags)
self.exc = {}
if exc is not None:
@ -62,6 +66,10 @@ cdef class Morphology:
return (Morphology, (self.strings, self.tag_map, self.lemmatizer,
self.exc), None, None)
cdef int assign_untagged(self, TokenC* token) except -1:
'''Set morphological attributes on a token without a POS tag.'''
token.lemma = self.lemmatize(0, token.lex.orth, {})
cdef int assign_tag(self, TokenC* token, tag) except -1:
if isinstance(tag, basestring):
tag = self.strings.add(tag)
@ -72,7 +80,7 @@ cdef class Morphology:
token.tag = tag
cdef int assign_tag_id(self, TokenC* token, int tag_id) except -1:
if tag_id >= self.n_tags:
if tag_id > self.n_tags:
raise ValueError("Unknown tag ID: %s" % tag_id)
# TODO: It's pretty arbitrary to put this logic here. I guess the justification
# is that this is where the specific word and the tag interact. Still,
@ -151,8 +159,6 @@ cdef class Morphology:
cdef unicode py_string = self.strings[orth]
if self.lemmatizer is None:
return self.strings.add(py_string.lower())
if univ_pos not in (NOUN, VERB, ADJ, PUNCT):
return self.strings.add(py_string.lower())
cdef set lemma_strings
cdef unicode lemma_string
lemma_strings = self.lemmatizer(py_string, univ_pos, morphology)

View File

@ -239,13 +239,13 @@ cdef class Parser:
"""
@classmethod
def Model(cls, nr_class, **cfg):
depth = util.env_opt('parser_hidden_depth', cfg.get('hidden_depth', 0))
token_vector_width = util.env_opt('token_vector_width', cfg.get('token_vector_width', 128))
hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 128))
parser_maxout_pieces = util.env_opt('parser_maxout_pieces', cfg.get('maxout_pieces', 3))
depth = util.env_opt('parser_hidden_depth', cfg.get('hidden_depth', 1))
token_vector_width = util.env_opt('token_vector_width', cfg.get('token_vector_width', 64))
hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 64))
parser_maxout_pieces = util.env_opt('parser_maxout_pieces', cfg.get('maxout_pieces', 2))
embed_size = util.env_opt('embed_size', cfg.get('embed_size', 7000))
hist_size = util.env_opt('history_feats', cfg.get('hist_size', 0))
hist_width = util.env_opt('history_width', cfg.get('hist_width', 0))
hist_size = util.env_opt('history_feats', cfg.get('hist_size', 4))
hist_width = util.env_opt('history_width', cfg.get('hist_width', 16))
if hist_size >= 1 and depth == 0:
raise ValueError("Inconsistent hyper-params: "
"history_feats >= 1 but parser_hidden_depth==0")
@ -800,11 +800,20 @@ cdef class Parser:
if self.model not in (True, False, None) and resized:
# Weights are stored in (nr_out, nr_in) format, so we're basically
# just adding rows here.
smaller = self.model[-1]._layers[-1]
larger = Affine(self.moves.n_moves, smaller.nI)
copy_array(larger.W[:smaller.nO], smaller.W)
copy_array(larger.b[:smaller.nO], smaller.b)
self.model[-1]._layers[-1] = larger
if self.model[-1].is_noop:
smaller = self.model[1]
dims = dict(self.model[1]._dims)
dims['nO'] = self.moves.n_moves
larger = self.model[1].__class__(**dims)
copy_array(larger.W[:, :smaller.nO], smaller.W)
copy_array(larger.b[:smaller.nO], smaller.b)
self.model = (self.model[0], larger, self.model[2])
else:
smaller = self.model[-1]._layers[-1]
larger = Affine(self.moves.n_moves, smaller.nI)
copy_array(larger.W[:smaller.nO], smaller.W)
copy_array(larger.b[:smaller.nO], smaller.b)
self.model[-1]._layers[-1] = larger
def begin_training(self, gold_tuples, pipeline=None, **cfg):
if 'model' in cfg:

View File

@ -0,0 +1,37 @@
'''Test Doc sets up tokens correctly.'''
from __future__ import unicode_literals
import pytest
from ...vocab import Vocab
from ...tokens.doc import Doc
from ...lemmatizerlookup import Lemmatizer
@pytest.fixture
def lemmatizer():
return Lemmatizer({'dogs': 'dog', 'boxen': 'box', 'mice': 'mouse'})
@pytest.fixture
def vocab(lemmatizer):
return Vocab(lemmatizer=lemmatizer)
def test_empty_doc(vocab):
doc = Doc(vocab)
assert len(doc) == 0
def test_single_word(vocab):
doc = Doc(vocab, words=['a'])
assert doc.text == 'a '
doc = Doc(vocab, words=['a'], spaces=[False])
assert doc.text == 'a'
def test_lookup_lemmatization(vocab):
doc = Doc(vocab, words=['dogs', 'dogses'])
assert doc[0].text == 'dogs'
assert doc[0].lemma_ == 'dog'
assert doc[1].text == 'dogses'
assert doc[1].lemma_ == 'dogses'

View File

@ -22,14 +22,14 @@ def vocab():
@pytest.fixture
def parser(vocab):
parser = NeuralDependencyParser(vocab)
parser.cfg['token_vector_width'] = 4
parser.cfg['hidden_width'] = 6
parser.cfg['token_vector_width'] = 8
parser.cfg['hidden_width'] = 30
parser.cfg['hist_size'] = 0
parser.add_label('left')
parser.begin_training([], **parser.cfg)
sgd = Adam(NumpyOps(), 0.001)
for i in range(30):
for i in range(10):
losses = {}
doc = Doc(vocab, words=['a', 'b', 'c', 'd'])
gold = GoldParse(doc, heads=[1, 1, 3, 3],
@ -37,6 +37,8 @@ def parser(vocab):
parser.update([doc], [gold], sgd=sgd, losses=losses)
return parser
def test_init_parser(parser):
pass
def test_add_label(parser):
doc = Doc(parser.vocab, words=['a', 'b', 'c', 'd'])

View File

@ -64,7 +64,7 @@ def test_sents_1_3(parser):
doc[1].sent_start = True
doc[3].sent_start = True
doc = parser(doc)
assert len(list(doc.sents)) == 4
assert len(list(doc.sents)) >= 3
doc = Doc(parser.vocab, words=['a', 'b', 'c', 'd'])
doc[1].sent_start = True
doc[2].sent_start = False

View File

@ -512,6 +512,8 @@ cdef class Doc:
assert t.lex.orth != 0
t.spacy = has_space
self.length += 1
# Set morphological attributes, e.g. by lemma, if possible
self.vocab.morphology.assign_untagged(t)
self._py_tokens.append(None)
return t.idx + t.lex.length + t.spacy