mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
Update visualizers docs and add submenu
This commit is contained in:
parent
5fb057b575
commit
80a2fb6193
|
@ -167,7 +167,15 @@
|
|||
|
||||
"visualizers": {
|
||||
"title": "Visualizers",
|
||||
"next": "resources"
|
||||
"tag_new": 2,
|
||||
"teaser": "Visualize dependencies and entities in your browser and notebook, or export HTML.",
|
||||
"next": "resources",
|
||||
"menu": {
|
||||
"Dependencies": "dep",
|
||||
"Entities": "ent",
|
||||
"Jupyter Notebooks": "jupyter",
|
||||
"Rendering HTML": "html"
|
||||
}
|
||||
},
|
||||
|
||||
"resources": {
|
||||
|
|
62
website/usage/_visualizers/_dep.jade
Normal file
62
website/usage/_visualizers/_dep.jade
Normal file
|
@ -0,0 +1,62 @@
|
|||
//- 💫 DOCS > USAGE > VISUALIZERS > DEPENDENCIES
|
||||
|
||||
p
|
||||
| The dependency visualizer, #[code dep], shows part-of-speech tags
|
||||
| and syntactic dependencies.
|
||||
|
||||
+code("Dependency example").
|
||||
import spacy
|
||||
from spacy import displacy
|
||||
|
||||
nlp = spacy.load('en')
|
||||
doc = nlp(u'This is a sentence.')
|
||||
displacy.serve(doc, style='dep')
|
||||
|
||||
+codepen("f0e85b64d469d6617251d8241716d55f", 370)
|
||||
|
||||
p
|
||||
| The argument #[code options] lets you specify a dictionary of settings
|
||||
| to customise the layout, for example:
|
||||
|
||||
+aside("Important note")
|
||||
| There's currently a known issue with the #[code compact] mode for
|
||||
| sentences with short arrows and long dependency labels, that causes labels
|
||||
| longer than the arrow to wrap. So if you come across this problem,
|
||||
| especially when using custom labels, you'll have to increase the
|
||||
| #[code distance] setting in the #[code options] to allow longer arcs.
|
||||
|
||||
+table(["Name", "Type", "Description", "Default"])
|
||||
+row
|
||||
+cell #[code compact]
|
||||
+cell bool
|
||||
+cell "Compact mode" with square arrows that takes up less space.
|
||||
+cell #[code False]
|
||||
|
||||
+row
|
||||
+cell #[code color]
|
||||
+cell unicode
|
||||
+cell Text color (HEX, RGB or color names).
|
||||
+cell #[code '#000000']
|
||||
|
||||
+row
|
||||
+cell #[code bg]
|
||||
+cell unicode
|
||||
+cell Background color (HEX, RGB or color names).
|
||||
+cell #[code '#ffffff']
|
||||
|
||||
+row
|
||||
+cell #[code font]
|
||||
+cell unicode
|
||||
+cell Font name or font family for all text.
|
||||
+cell #[code 'Arial']
|
||||
|
||||
p
|
||||
| For a list of all available options, see the
|
||||
| #[+api("displacy#options") #[code displacy] API documentation].
|
||||
|
||||
+aside-code("Options example").
|
||||
options = {'compact': True, 'bg': '#09a3d5',
|
||||
'color': 'white', 'font': 'Source Sans Pro'}
|
||||
displacy.serve(doc, style='dep', options=options)
|
||||
|
||||
+codepen("39c02c893a84794353de77a605d817fd", 360)
|
80
website/usage/_visualizers/_ent.jade
Normal file
80
website/usage/_visualizers/_ent.jade
Normal file
|
@ -0,0 +1,80 @@
|
|||
//- 💫 DOCS > USAGE > VISUALIZERS > ENTITIES
|
||||
|
||||
p
|
||||
| The entity visualizer, #[code ent], highlights named entities and
|
||||
| their labels in a text.
|
||||
|
||||
+code("Named Entity example").
|
||||
import spacy
|
||||
from spacy import displacy
|
||||
|
||||
text = """But Google is starting from behind. The company made a late push
|
||||
into hardware, and Apple’s Siri, available on iPhones, and Amazon’s Alexa
|
||||
software, which runs on its Echo and Dot devices, have clear leads in
|
||||
consumer adoption."""
|
||||
|
||||
nlp = spacy.load('custom_ner_model')
|
||||
doc = nlp(text)
|
||||
displacy.serve(doc, style='ent')
|
||||
|
||||
+codepen("a73f8b68f9af3157855962b283b364e4", 345)
|
||||
|
||||
p The entity visualizer lets you customise the following #[code options]:
|
||||
|
||||
+table(["Name", "Type", "Description", "Default"])
|
||||
+row
|
||||
+cell #[code ents]
|
||||
+cell list
|
||||
+cell
|
||||
| Entity types to highlight (#[code None] for all types).
|
||||
+cell #[code None]
|
||||
|
||||
+row
|
||||
+cell #[code colors]
|
||||
+cell dict
|
||||
+cell
|
||||
| Color overrides. Entity types in lowercase should be mapped to
|
||||
| color names or values.
|
||||
+cell #[code {}]
|
||||
|
||||
p
|
||||
| If you specify a list of #[code ents], only those entity types will be
|
||||
| rendered – for example, you can choose to display #[code PERSON] entities.
|
||||
| Internally, the visualizer knows nothing about available entity types and
|
||||
| will render whichever spans and labels it receives. This makes it
|
||||
| especially easy to work with custom entity types. By default, displaCy
|
||||
| comes with colours for all
|
||||
| #[+a("/api/annotation#named-entities") entity types supported by spaCy].
|
||||
| If you're using custom entity types, you can use the #[code colors]
|
||||
| setting to add your own colours for them.
|
||||
|
||||
+aside-code("Options example").
|
||||
colors = {'ORG': 'linear-gradient(90deg, #aa9cfc, #fc9ce7)'}
|
||||
options = {'ents': ['ORG'], 'colors': colors}
|
||||
displacy.serve(doc, style='ent', options=options)
|
||||
|
||||
+codepen("f42ec690762b6f007022a7acd6d0c7d4", 300)
|
||||
|
||||
p
|
||||
| The above example uses a little trick: Since the background colour values
|
||||
| are added as the #[code background] style attribute, you can use any
|
||||
| #[+a("https://tympanus.net/codrops/css_reference/background/") valid background value]
|
||||
| or shorthand — including gradients and even images!
|
||||
|
||||
+h(3, "ent-titles") Adding titles to documents
|
||||
|
||||
p
|
||||
| Rendering several large documents on one page can easily become confusing.
|
||||
| To add a headline to each visualization, you can add a #[code title] to
|
||||
| its #[code user_data]. User data is never touched or modified by spaCy.
|
||||
|
||||
+code.
|
||||
doc = nlp(u'This is a sentence about Google.')
|
||||
doc.user_data['title'] = 'This is a title'
|
||||
displacy.serve(doc, style='ent')
|
||||
|
||||
p
|
||||
| This feature is espeically handy if you're using displaCy to compare
|
||||
| performance at different stages of a process, e.g. during training. Here
|
||||
| you could use the title for a brief description of the text example and
|
||||
| the number of iterations.
|
162
website/usage/_visualizers/_html.jade
Normal file
162
website/usage/_visualizers/_html.jade
Normal file
|
@ -0,0 +1,162 @@
|
|||
//- 💫 DOCS > USAGE > VISUALIZERS > HTML
|
||||
|
||||
p
|
||||
| If you don't need the web server and just want to generate the markup
|
||||
| – for example, to export it to a file or serve it in a custom
|
||||
| way – you can use #[+api("displacy#render") #[code displacy.render]].
|
||||
| It works the same way, but returns a string containing the markup.
|
||||
|
||||
+code("Example").
|
||||
import spacy
|
||||
from spacy import displacy
|
||||
|
||||
nlp = spacy.load('en')
|
||||
doc1 = nlp(u'This is a sentence.')
|
||||
doc2 = nlp(u'This is another sentence.')
|
||||
html = displacy.render([doc1, doc2], style='dep', page=True)
|
||||
|
||||
p
|
||||
| #[code page=True] renders the markup wrapped as a full HTML page.
|
||||
| For minified and more compact HTML markup, you can set #[code minify=True].
|
||||
| If you're rendering a dependency parse, you can also export it as an
|
||||
| #[code .svg] file.
|
||||
|
||||
+aside("What's SVG?")
|
||||
| Unlike other image formats, the SVG (Scalable Vector Graphics) uses XML
|
||||
| markup that's easy to manipulate
|
||||
| #[+a("https://www.smashingmagazine.com/2014/11/styling-and-animating-svgs-with-css/") using CSS] or
|
||||
| #[+a("https://css-tricks.com/smil-is-dead-long-live-smil-a-guide-to-alternatives-to-smil-features/") JavaScript].
|
||||
| Essentially, SVG lets you design with code, which makes it a perfect fit
|
||||
| for visualizing dependency trees. SVGs can be embedded online in an
|
||||
| #[code <img>] tag, or inlined in an HTML document. They're also
|
||||
| pretty easy to #[+a("https://convertio.co/image-converter/") convert].
|
||||
|
||||
+code.
|
||||
svg = displacy.render(doc, style='dep')
|
||||
output_path = Path('/images/sentence.svg')
|
||||
output_path.open('w', encoding='utf-8').write(svg)
|
||||
|
||||
+infobox("Important note")
|
||||
| Since each visualization is generated as a separate SVG, exporting
|
||||
| #[code .svg] files only works if you're rendering #[strong one single doc]
|
||||
| at a time. (This makes sense – after all, each visualization should be
|
||||
| a standalone graphic.) So instead of rendering all #[code Doc]s at one,
|
||||
| loop over them and export them separately.
|
||||
|
||||
|
||||
+h(3, "examples-export-svg") Example: Export SVG graphics of dependency parses
|
||||
|
||||
+code("Example").
|
||||
import spacy
|
||||
from spacy import displacy
|
||||
from pathlib import Path
|
||||
|
||||
nlp = spacy.load('en')
|
||||
sentences = ["This is an example.", "This is another one."]
|
||||
for sent in sentences:
|
||||
doc = nlp(sentence)
|
||||
svg = displacy.render(doc, style='dep')
|
||||
file_name = '-'.join([w.text for w in doc if not w.is_punct]) + '.svg'
|
||||
output_path = Path('/images/' + file_name)
|
||||
output_path.open('w', encoding='utf-8').write(svg)
|
||||
|
||||
p
|
||||
| The above code will generate the dependency visualizations and them to
|
||||
| two files, #[code This-is-an-example.svg] and #[code This-is-another-one.svg].
|
||||
|
||||
|
||||
+h(3, "manual-usage") Rendering data manually
|
||||
|
||||
p
|
||||
| You can also use displaCy to manually render data. This can be useful if
|
||||
| you want to visualize output from other libraries, like
|
||||
| #[+a("http://www.nltk.org") NLTK] or
|
||||
| #[+a("https://github.com/tensorflow/models/tree/master/syntaxnet") SyntaxNet].
|
||||
| Simply convert the dependency parse or recognised entities to displaCy's
|
||||
| format and set #[code manual=True] on either #[code render()] or
|
||||
| #[code serve()].
|
||||
|
||||
+aside-code("Example").
|
||||
ex = [{'text': 'But Google is starting from behind.',
|
||||
'ents': [{'start': 4, 'end': 10, 'label': 'ORG'}],
|
||||
'title': None}]
|
||||
html = displacy.render(ex, style='ent', manual=True)
|
||||
|
||||
+code("DEP input").
|
||||
{
|
||||
'words': [
|
||||
{'text': 'This', 'tag': 'DT'},
|
||||
{'text': 'is', 'tag': 'VBZ'},
|
||||
{'text': 'a', 'tag': 'DT'},
|
||||
{'text': 'sentence', 'tag': 'NN'}],
|
||||
'arcs': [
|
||||
{'start': 0, 'end': 1, 'label': 'nsubj', 'dir': 'left'},
|
||||
{'start': 2, 'end': 3, 'label': 'det', 'dir': 'left'},
|
||||
{'start': 1, 'end': 3, 'label': 'attr', 'dir': 'right'}]
|
||||
}
|
||||
|
||||
+code("ENT input").
|
||||
{
|
||||
'text': 'But Google is starting from behind.',
|
||||
'ents': [{'start': 4, 'end': 10, 'label': 'ORG'}],
|
||||
'title': None
|
||||
}
|
||||
|
||||
+h(3, "webapp") Using displaCy in a web application
|
||||
|
||||
p
|
||||
| If you want to use the visualizers as part of a web application, for
|
||||
| example to create something like our
|
||||
| #[+a(DEMOS_URL + "/displacy") online demo], it's not recommended to
|
||||
| simply wrap and serve the displaCy renderer. Instead, you should only
|
||||
| rely on the server to perform spaCy's processing capabilities, and use
|
||||
| #[+a(gh("displacy")) displaCy.js] to render the JSON-formatted output.
|
||||
|
||||
+aside("Why not return the HTML by the server?")
|
||||
| It's certainly possible to just have your server return the markup.
|
||||
| But outputting raw, unsanitised HTML is risky and makes your app vulnerable to
|
||||
| #[+a("https://en.wikipedia.org/wiki/Cross-site_scripting") cross-site scripting]
|
||||
| (XSS). All your user needs to do is find a way to make spaCy return text
|
||||
| like #[code <script src="malicious-code.js"><script>], which
|
||||
| is pretty easy in NER mode. Instead of relying on the server to render
|
||||
| and sanitise HTML, you can do this on the client in JavaScript.
|
||||
| displaCy.js creates the markup as DOM nodes and will never insert raw
|
||||
| HTML.
|
||||
|
||||
p
|
||||
| The #[code parse_deps] function takes a #[code Doc] object and returns
|
||||
| a dictionary in a format that can be rendered by displaCy.
|
||||
|
||||
+code("Example").
|
||||
import spacy
|
||||
from spacy import displacy
|
||||
|
||||
nlp = spacy.load('en')
|
||||
|
||||
def displacy_service(text):
|
||||
doc = nlp(text)
|
||||
return displacy.parse_deps(doc)
|
||||
|
||||
p
|
||||
| Using a library like #[+a("https://falconframework.org/") Falcon] or
|
||||
| #[+a("http://www.hug.rest/") Hug], you can easily turn the above code
|
||||
| into a simple REST API that receives a text and returns a JSON-formatted
|
||||
| parse. In your front-end, include #[+a(gh("displacy")) displacy.js] and
|
||||
| initialise it with the API URL and the ID or query selector of the
|
||||
| container to render the visualisation in, e.g. #[code '#displacy'] for
|
||||
| #[code <div id="displacy">].
|
||||
|
||||
+code("script.js", "javascript").
|
||||
var displacy = new displaCy('http://localhost:8080', {
|
||||
container: '#displacy'
|
||||
})
|
||||
|
||||
function parse(text) {
|
||||
displacy.parse(text);
|
||||
}
|
||||
|
||||
p
|
||||
| When you call #[code parse()], it will make a request to your API,
|
||||
| receive the JSON-formatted parse and render it in your container. To
|
||||
| create an interactive experience, you could trigger this function by
|
||||
| a button and read the text from an #[code <input>] field.
|
36
website/usage/_visualizers/_jupyter.jade
Normal file
36
website/usage/_visualizers/_jupyter.jade
Normal file
|
@ -0,0 +1,36 @@
|
|||
//- 💫 DOCS > USAGE > VISUALIZERS > JUPYTER
|
||||
|
||||
p
|
||||
| displaCy is able to detect whether you're working in a
|
||||
| #[+a("https://jupyter.org") Jupyter] notebook, and will return markup
|
||||
| that can be rendered in a cell straight away. When you export your
|
||||
| notebook, the visualizations will be included as HTML.
|
||||
|
||||
+code("Jupyter Example").
|
||||
# don't forget to install a model, e.g.: spacy download en
|
||||
import spacy
|
||||
from spacy import displacy
|
||||
|
||||
doc = nlp(u'Rats are various medium-sized, long-tailed rodents.')
|
||||
displacy.render(doc, style='dep')
|
||||
|
||||
doc2 = nlp(LONG_NEWS_ARTICLE)
|
||||
displacy.render(doc2, style='ent')
|
||||
|
||||
+aside("Enabling or disabling Jupyter mode")
|
||||
| To explicitly enable or disable "Jupyter mode", you can use the
|
||||
| #[code jupyter] keyword argument – e.g. to return raw HTML in a notebook,
|
||||
| or to force Jupyter rendering if auto-detection fails.
|
||||
|
||||
+image("/assets/img/displacy_jupyter.jpg", 700, false, "Example of using the displaCy dependency and named entity visualizer in a Jupyter notebook")
|
||||
|
||||
p
|
||||
| Internally, displaCy imports #[code display] and #[code HTML] from
|
||||
| #[code IPython.core.display] and returns a Jupyter HTML object. If you
|
||||
| were doing it manually, it'd look like this:
|
||||
|
||||
+code.
|
||||
from IPython.core.display import display, HTML
|
||||
|
||||
html = displacy.render(doc, style='dep')
|
||||
return display(HTML(html))
|
|
@ -2,383 +2,47 @@
|
|||
|
||||
include ../_includes/_mixins
|
||||
|
||||
p
|
||||
| As of v2.0, our popular visualizers, #[+a(DEMOS_URL + "/displacy") displaCy]
|
||||
| and #[+a(DEMOS_URL + "/displacy-ent") displaCy #[sup ENT]] are finally an
|
||||
| official part of the library. Visualizing a dependency parse or named
|
||||
| entities in a text is not only a fun NLP demo – it can also be incredibly
|
||||
| helpful in speeding up development and debugging your code and training
|
||||
| process. Instead of printing a list of dependency labels or entity spans,
|
||||
| you can simply pass your #[code Doc] objects to #[code displacy] and view
|
||||
| the visualizations in your browser, or export them as HTML files or
|
||||
| vector graphics.
|
||||
|
||||
p
|
||||
| If you're running a #[+a("https://jupyter.org") Jupyter] notebook,
|
||||
| displaCy will detect this and return the markup in a format
|
||||
| #[+a("#jupyter") ready to be rendered and exported].
|
||||
|
||||
+aside("What about the old visualizers?")
|
||||
| Our JavaScript-based visualizers #[+src(gh("displacy")) #[code displacy.js]] and
|
||||
| #[+src(gh("displacy-ent")) #[code displacy-ent.js]] will still be available on
|
||||
| GitHub. If you're looking to implement web-based visualizations, we
|
||||
| generally recommend using those instead of spaCy's built-in
|
||||
| #[code displacy] module. It'll allow your application to perform all
|
||||
| rendering on the client and only rely on the server for the text
|
||||
| processing. The generated markup is also more compatible with modern web
|
||||
| standards.
|
||||
|
||||
+h(2, "getting-started") Getting started
|
||||
+tag-new(2)
|
||||
|
||||
p
|
||||
| The quickest way visualize #[code Doc] is to use
|
||||
| #[+api("displacy#serve") #[code displacy.serve]]. This will spin up a
|
||||
| simple web server and let you view the result straight from your browser.
|
||||
| displaCy can either take a single #[code Doc] or a list of #[code Doc]
|
||||
| objects as its first argument. This lets you construct them however you
|
||||
| like – using any model or modifications you like.
|
||||
|
||||
+h(3, "dep") Visualizing the dependency parse
|
||||
|
||||
p
|
||||
| The dependency visualizer, #[code dep], shows part-of-speech tags
|
||||
| and syntactic dependencies.
|
||||
|
||||
+code("Dependency example").
|
||||
import spacy
|
||||
from spacy import displacy
|
||||
|
||||
nlp = spacy.load('en')
|
||||
doc = nlp(u'This is a sentence.')
|
||||
displacy.serve(doc, style='dep')
|
||||
|
||||
+codepen("f0e85b64d469d6617251d8241716d55f", 370)
|
||||
|
||||
p
|
||||
| The argument #[code options] lets you specify a dictionary of settings
|
||||
| to customise the layout, for example:
|
||||
|
||||
+aside("Important note")
|
||||
| There's currently a known issue with the #[code compact] mode for
|
||||
| sentences with short arrows and long dependency labels, that causes labels
|
||||
| longer than the arrow to wrap. So if you come across this problem,
|
||||
| especially when using custom labels, you'll have to increase the
|
||||
| #[code distance] setting in the #[code options] to allow longer arcs.
|
||||
|
||||
+table(["Name", "Type", "Description", "Default"])
|
||||
+row
|
||||
+cell #[code compact]
|
||||
+cell bool
|
||||
+cell "Compact mode" with square arrows that takes up less space.
|
||||
+cell #[code False]
|
||||
|
||||
+row
|
||||
+cell #[code color]
|
||||
+cell unicode
|
||||
+cell Text color (HEX, RGB or color names).
|
||||
+cell #[code '#000000']
|
||||
|
||||
+row
|
||||
+cell #[code bg]
|
||||
+cell unicode
|
||||
+cell Background color (HEX, RGB or color names).
|
||||
+cell #[code '#ffffff']
|
||||
|
||||
+row
|
||||
+cell #[code font]
|
||||
+cell unicode
|
||||
+cell Font name or font family for all text.
|
||||
+cell #[code 'Arial']
|
||||
|
||||
p
|
||||
| For a list of all available options, see the
|
||||
| #[+api("displacy#options") #[code displacy] API documentation].
|
||||
|
||||
+aside-code("Options example").
|
||||
options = {'compact': True, 'bg': '#09a3d5',
|
||||
'color': 'white', 'font': 'Source Sans Pro'}
|
||||
displacy.serve(doc, style='dep', options=options)
|
||||
|
||||
+codepen("39c02c893a84794353de77a605d817fd", 360)
|
||||
|
||||
+h(3, "ent") Visualizing the entity recognizer
|
||||
|
||||
p
|
||||
| The entity visualizer, #[code ent], highlights named entities and
|
||||
| their labels in a text.
|
||||
|
||||
+code("Named Entity example").
|
||||
import spacy
|
||||
from spacy import displacy
|
||||
|
||||
text = """But Google is starting from behind. The company made a late push
|
||||
into hardware, and Apple’s Siri, available on iPhones, and Amazon’s Alexa
|
||||
software, which runs on its Echo and Dot devices, have clear leads in
|
||||
consumer adoption."""
|
||||
|
||||
nlp = spacy.load('custom_ner_model')
|
||||
doc = nlp(text)
|
||||
displacy.serve(doc, style='ent')
|
||||
|
||||
+codepen("a73f8b68f9af3157855962b283b364e4", 345)
|
||||
|
||||
p The entity visualizer lets you customise the following #[code options]:
|
||||
|
||||
+table(["Name", "Type", "Description", "Default"])
|
||||
+row
|
||||
+cell #[code ents]
|
||||
+cell list
|
||||
+cell
|
||||
| Entity types to highlight (#[code None] for all types).
|
||||
+cell #[code None]
|
||||
|
||||
+row
|
||||
+cell #[code colors]
|
||||
+cell dict
|
||||
+cell
|
||||
| Color overrides. Entity types in lowercase should be mapped to
|
||||
| color names or values.
|
||||
+cell #[code {}]
|
||||
|
||||
p
|
||||
| If you specify a list of #[code ents], only those entity types will be
|
||||
| rendered – for example, you can choose to display #[code PERSON] entities.
|
||||
| Internally, the visualizer knows nothing about available entity types and
|
||||
| will render whichever spans and labels it receives. This makes it
|
||||
| especially easy to work with custom entity types. By default, displaCy
|
||||
| comes with colours for all
|
||||
| #[+a("/api/annotation#named-entities") entity types supported by spaCy].
|
||||
| If you're using custom entity types, you can use the #[code colors]
|
||||
| setting to add your own colours for them.
|
||||
|
||||
+aside-code("Options example").
|
||||
colors = {'ORG': 'linear-gradient(90deg, #aa9cfc, #fc9ce7)'}
|
||||
options = {'ents': ['ORG'], 'colors': colors}
|
||||
displacy.serve(doc, style='ent', options=options)
|
||||
|
||||
+codepen("f42ec690762b6f007022a7acd6d0c7d4", 300)
|
||||
|
||||
p
|
||||
| The above example uses a little trick: Since the background colour values
|
||||
| are added as the #[code background] style attribute, you can use any
|
||||
| #[+a("https://tympanus.net/codrops/css_reference/background/") valid background value]
|
||||
| or shorthand — including gradients and even images!
|
||||
|
||||
+h(3, "ent-titles") Adding titles to documents
|
||||
|
||||
p
|
||||
| Rendering several large documents on one page can easily become confusing.
|
||||
| To add a headline to each visualization, you can add a #[code title] to
|
||||
| its #[code user_data]. User data is never touched or modified by spaCy.
|
||||
|
||||
+code.
|
||||
doc = nlp(u'This is a sentence about Google.')
|
||||
doc.user_data['title'] = 'This is a title'
|
||||
displacy.serve(doc, style='ent')
|
||||
|
||||
p
|
||||
| This feature is espeically handy if you're using displaCy to compare
|
||||
| performance at different stages of a process, e.g. during training. Here
|
||||
| you could use the title for a brief description of the text example and
|
||||
| the number of iterations.
|
||||
|
||||
+h(2, "render") Rendering visualizations
|
||||
|
||||
p
|
||||
| If you don't need the web server and just want to generate the markup
|
||||
| – for example, to export it to a file or serve it in a custom
|
||||
| way – you can use #[+api("displacy#render") #[code displacy.render]].
|
||||
| It works the same way, but returns a string containing the markup.
|
||||
|
||||
+code("Example").
|
||||
import spacy
|
||||
from spacy import displacy
|
||||
|
||||
nlp = spacy.load('en')
|
||||
doc1 = nlp(u'This is a sentence.')
|
||||
doc2 = nlp(u'This is another sentence.')
|
||||
html = displacy.render([doc1, doc2], style='dep', page=True)
|
||||
|
||||
p
|
||||
| #[code page=True] renders the markup wrapped as a full HTML page.
|
||||
| For minified and more compact HTML markup, you can set #[code minify=True].
|
||||
| If you're rendering a dependency parse, you can also export it as an
|
||||
| #[code .svg] file.
|
||||
|
||||
+aside("What's SVG?")
|
||||
| Unlike other image formats, the SVG (Scalable Vector Graphics) uses XML
|
||||
| markup that's easy to manipulate
|
||||
| #[+a("https://www.smashingmagazine.com/2014/11/styling-and-animating-svgs-with-css/") using CSS] or
|
||||
| #[+a("https://css-tricks.com/smil-is-dead-long-live-smil-a-guide-to-alternatives-to-smil-features/") JavaScript].
|
||||
| Essentially, SVG lets you design with code, which makes it a perfect fit
|
||||
| for visualizing dependency trees. SVGs can be embedded online in an
|
||||
| #[code <img>] tag, or inlined in an HTML document. They're also
|
||||
| pretty easy to #[+a("https://convertio.co/image-converter/") convert].
|
||||
|
||||
+code.
|
||||
svg = displacy.render(doc, style='dep')
|
||||
output_path = Path('/images/sentence.svg')
|
||||
output_path.open('w', encoding='utf-8').write(svg)
|
||||
|
||||
+infobox("Important note")
|
||||
| Since each visualization is generated as a separate SVG, exporting
|
||||
| #[code .svg] files only works if you're rendering #[strong one single doc]
|
||||
| at a time. (This makes sense – after all, each visualization should be
|
||||
| a standalone graphic.) So instead of rendering all #[code Doc]s at one,
|
||||
| loop over them and export them separately.
|
||||
|
||||
|
||||
+h(3, "examples-export-svg") Example: Export SVG graphics of dependency parses
|
||||
|
||||
+code("Example").
|
||||
import spacy
|
||||
from spacy import displacy
|
||||
from pathlib import Path
|
||||
|
||||
nlp = spacy.load('en')
|
||||
sentences = ["This is an example.", "This is another one."]
|
||||
for sent in sentences:
|
||||
doc = nlp(sentence)
|
||||
svg = displacy.render(doc, style='dep')
|
||||
file_name = '-'.join([w.text for w in doc if not w.is_punct]) + '.svg'
|
||||
output_path = Path('/images/' + file_name)
|
||||
output_path.open('w', encoding='utf-8').write(svg)
|
||||
|
||||
p
|
||||
| The above code will generate the dependency visualizations and them to
|
||||
| two files, #[code This-is-an-example.svg] and #[code This-is-another-one.svg].
|
||||
|
||||
|
||||
+h(2, "jupyter") Using displaCy in Jupyter notebooks
|
||||
|
||||
p
|
||||
| displaCy is able to detect whether you're working in a
|
||||
| #[+a("https://jupyter.org") Jupyter] notebook, and will return markup
|
||||
| that can be rendered in a cell straight away. When you export your
|
||||
| notebook, the visualizations will be included as HTML.
|
||||
|
||||
+code("Jupyter Example").
|
||||
# don't forget to install a model, e.g.: spacy download en
|
||||
import spacy
|
||||
from spacy import displacy
|
||||
|
||||
doc = nlp(u'Rats are various medium-sized, long-tailed rodents.')
|
||||
displacy.render(doc, style='dep')
|
||||
|
||||
doc2 = nlp(LONG_NEWS_ARTICLE)
|
||||
displacy.render(doc2, style='ent')
|
||||
|
||||
+aside("Enabling or disabling Jupyter mode")
|
||||
| To explicitly enable or disable "Jupyter mode", you can use the
|
||||
| #[code jupyter] keyword argument – e.g. to return raw HTML in a notebook,
|
||||
| or to force Jupyter rendering if auto-detection fails.
|
||||
|
||||
+image("/assets/img/displacy_jupyter.jpg", 700, false, "Example of using the displaCy dependency and named entity visualizer in a Jupyter notebook")
|
||||
|
||||
p
|
||||
| Internally, displaCy imports #[code display] and #[code HTML] from
|
||||
| #[code IPython.core.display] and returns a Jupyter HTML object. If you
|
||||
| were doing it manually, it'd look like this:
|
||||
|
||||
+code.
|
||||
from IPython.core.display import display, HTML
|
||||
|
||||
html = displacy.render(doc, style='dep')
|
||||
return display(HTML(html))
|
||||
|
||||
+h(2, "manual-usage") Rendering data manually
|
||||
|
||||
p
|
||||
| You can also use displaCy to manually render data. This can be useful if
|
||||
| you want to visualize output from other libraries, like
|
||||
| #[+a("http://www.nltk.org") NLTK] or
|
||||
| #[+a("https://github.com/tensorflow/models/tree/master/syntaxnet") SyntaxNet].
|
||||
| Simply convert the dependency parse or recognised entities to displaCy's
|
||||
| format and set #[code manual=True] on either #[code render()] or
|
||||
| #[code serve()].
|
||||
|
||||
+aside-code("Example").
|
||||
ex = [{'text': 'But Google is starting from behind.',
|
||||
'ents': [{'start': 4, 'end': 10, 'label': 'ORG'}],
|
||||
'title': None}]
|
||||
html = displacy.render(ex, style='ent', manual=True)
|
||||
|
||||
+code("DEP input").
|
||||
{
|
||||
'words': [
|
||||
{'text': 'This', 'tag': 'DT'},
|
||||
{'text': 'is', 'tag': 'VBZ'},
|
||||
{'text': 'a', 'tag': 'DT'},
|
||||
{'text': 'sentence', 'tag': 'NN'}],
|
||||
'arcs': [
|
||||
{'start': 0, 'end': 1, 'label': 'nsubj', 'dir': 'left'},
|
||||
{'start': 2, 'end': 3, 'label': 'det', 'dir': 'left'},
|
||||
{'start': 1, 'end': 3, 'label': 'attr', 'dir': 'right'}]
|
||||
}
|
||||
|
||||
+code("ENT input").
|
||||
{
|
||||
'text': 'But Google is starting from behind.',
|
||||
'ents': [{'start': 4, 'end': 10, 'label': 'ORG'}],
|
||||
'title': None
|
||||
}
|
||||
|
||||
+h(2, "webapp") Using displaCy in a web application
|
||||
|
||||
p
|
||||
| If you want to use the visualizers as part of a web application, for
|
||||
| example to create something like our
|
||||
| #[+a(DEMOS_URL + "/displacy") online demo], it's not recommended to
|
||||
| simply wrap and serve the displaCy renderer. Instead, you should only
|
||||
| rely on the server to perform spaCy's processing capabilities, and use
|
||||
| #[+a(gh("displacy")) displaCy.js] to render the JSON-formatted output.
|
||||
|
||||
+aside("Why not return the HTML by the server?")
|
||||
| It's certainly possible to just have your server return the markup.
|
||||
| But outputting raw, unsanitised HTML is risky and makes your app vulnerable to
|
||||
| #[+a("https://en.wikipedia.org/wiki/Cross-site_scripting") cross-site scripting]
|
||||
| (XSS). All your user needs to do is find a way to make spaCy return text
|
||||
| like #[code <script src="malicious-code.js"><script>], which
|
||||
| is pretty easy in NER mode. Instead of relying on the server to render
|
||||
| and sanitise HTML, you can do this on the client in JavaScript.
|
||||
| displaCy.js creates the markup as DOM nodes and will never insert raw
|
||||
| HTML.
|
||||
|
||||
p
|
||||
| The #[code parse_deps] function takes a #[code Doc] object and returns
|
||||
| a dictionary in a format that can be rendered by displaCy.
|
||||
|
||||
+code("Example").
|
||||
import spacy
|
||||
from spacy import displacy
|
||||
|
||||
nlp = spacy.load('en')
|
||||
|
||||
def displacy_service(text):
|
||||
doc = nlp(text)
|
||||
return displacy.parse_deps(doc)
|
||||
|
||||
p
|
||||
| Using a library like #[+a("https://falconframework.org/") Falcon] or
|
||||
| #[+a("http://www.hug.rest/") Hug], you can easily turn the above code
|
||||
| into a simple REST API that receives a text and returns a JSON-formatted
|
||||
| parse. In your front-end, include #[+a(gh("displacy")) displacy.js] and
|
||||
| initialise it with the API URL and the ID or query selector of the
|
||||
| container to render the visualisation in, e.g. #[code '#displacy'] for
|
||||
| #[code <div id="displacy">].
|
||||
|
||||
+code("script.js", "javascript").
|
||||
var displacy = new displaCy('http://localhost:8080', {
|
||||
container: '#displacy'
|
||||
})
|
||||
|
||||
function parse(text) {
|
||||
displacy.parse(text);
|
||||
}
|
||||
|
||||
p
|
||||
| When you call #[code parse()], it will make a request to your API,
|
||||
| receive the JSON-formatted parse and render it in your container. To
|
||||
| create an interactive experience, you could trigger this function by
|
||||
| a button and read the text from an #[code <input>] field.
|
||||
+section
|
||||
p
|
||||
| As of v2.0, our popular visualizers, #[+a(DEMOS_URL + "/displacy") displaCy]
|
||||
| and #[+a(DEMOS_URL + "/displacy-ent") displaCy #[sup ENT]] are finally an
|
||||
| official part of the library. Visualizing a dependency parse or named
|
||||
| entities in a text is not only a fun NLP demo – it can also be incredibly
|
||||
| helpful in speeding up development and debugging your code and training
|
||||
| process. If you're running a #[+a("https://jupyter.org") Jupyter] notebook,
|
||||
| displaCy will detect this and return the markup in a format
|
||||
| #[+a("#jupyter") ready to be rendered and exported].
|
||||
|
||||
+aside("What about the old visualizers?")
|
||||
| Our JavaScript-based visualizers #[+src(gh("displacy")) #[code displacy.js]] and
|
||||
| #[+src(gh("displacy-ent")) #[code displacy-ent.js]] will still be available on
|
||||
| GitHub. If you're looking to implement web-based visualizations, we
|
||||
| generally recommend using those instead of spaCy's built-in
|
||||
| #[code displacy] module. It'll allow your application to perform all
|
||||
| rendering on the client and only rely on the server for the text
|
||||
| processing. The generated markup is also more compatible with modern web
|
||||
| standards.
|
||||
|
||||
p
|
||||
| The quickest way visualize #[code Doc] is to use
|
||||
| #[+api("displacy#serve") #[code displacy.serve]]. This will spin up a
|
||||
| simple web server and let you view the result straight from your browser.
|
||||
| displaCy can either take a single #[code Doc] or a list of #[code Doc]
|
||||
| objects as its first argument. This lets you construct them however you
|
||||
| like – using any model or modifications you like.
|
||||
|
||||
+section("dep")
|
||||
+h(2, "dep") Visualizing the dependency parse
|
||||
include _visualizers/_dep
|
||||
|
||||
+section("ent")
|
||||
+h(2, "ent") Visualizing the entity recognizer
|
||||
include _visualizers/_ent
|
||||
|
||||
+section("jupyter")
|
||||
+h(2, "jupyter") Using displaCy in Jupyter notebooks
|
||||
include _visualizers/_jupyter
|
||||
|
||||
+section("html")
|
||||
+h(2, "html") Rendering HTML
|
||||
include _visualizers/_html
|
||||
|
|
Loading…
Reference in New Issue
Block a user