diff --git a/spacy/_ml.py b/spacy/_ml.py index 15ffca9ad..5ab430684 100644 --- a/spacy/_ml.py +++ b/spacy/_ml.py @@ -370,24 +370,20 @@ def fine_tune(embedding, combine=None): vecs, bp_vecs = embedding.begin_update(docs, drop=drop) flat_tokvecs = embedding.ops.flatten(tokvecs) flat_vecs = embedding.ops.flatten(vecs) - alpha = model.mix - minus = 1-model.mix output = embedding.ops.unflatten( - (alpha * flat_tokvecs + minus * flat_vecs), lengths) + (model.mix[0] * flat_tokvecs + model.mix[1] * flat_vecs), lengths) def fine_tune_bwd(d_output, sgd=None): flat_grad = model.ops.flatten(d_output) - model.d_mix += flat_tokvecs.dot(flat_grad.T).sum() - model.d_mix += 1-flat_vecs.dot(flat_grad.T).sum() + model.d_mix[0] += flat_tokvecs.dot(flat_grad.T).sum() + model.d_mix[1] += flat_vecs.dot(flat_grad.T).sum() - bp_vecs([d_o * minus for d_o in d_output], sgd=sgd) - d_output = [d_o * alpha for d_o in d_output] + bp_vecs([d_o * model.mix[1] for d_o in d_output], sgd=sgd) sgd(model._mem.weights, model._mem.gradient, key=model.id) - model.mix = model.ops.xp.minimum(model.mix, 1.0) - return d_output + return [d_o * model.mix[0] for d_o in d_output] return output, fine_tune_bwd model = wrap(fine_tune_fwd, embedding) - model.mix = model._mem.add((model.id, 'mix'), (1,)) + model.mix = model._mem.add((model.id, 'mix'), (2,)) model.mix.fill(0.5) model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix')) return model