diff --git a/.github/azure-steps.yml b/.github/azure-steps.yml
index 2f77706b8..d0db75f9a 100644
--- a/.github/azure-steps.yml
+++ b/.github/azure-steps.yml
@@ -107,7 +107,7 @@ steps:
displayName: "Run CPU tests"
- script: |
- python -m pip install --pre thinc-apple-ops
+ python -m pip install 'spacy[apple]'
python -m pytest --pyargs spacy
displayName: "Run CPU tests with thinc-apple-ops"
condition: and(startsWith(variables['imageName'], 'macos'), eq(variables['python.version'], '3.11'))
diff --git a/README.md b/README.md
index 7595460fb..195424551 100644
--- a/README.md
+++ b/README.md
@@ -46,6 +46,7 @@ open-source software, released under the [MIT license](https://github.com/explos
| 🛠 **[Changelog]** | Changes and version history. |
| 💝 **[Contribute]** | How to contribute to the spaCy project and code base. |
| | Get a custom spaCy pipeline, tailor-made for your NLP problem by spaCy's core developers. Streamlined, production-ready, predictable and maintainable. Start by completing our 5-minute questionnaire to tell us what you need and we'll be in touch! **[Learn more →](https://explosion.ai/spacy-tailored-pipelines)** |
+| | Bespoke advice for problem solving, strategy and analysis for applied NLP projects. Services include data strategy, code reviews, pipeline design and annotation coaching. Curious? Fill in our 5-minute questionnaire to tell us what you need and we'll be in touch! **[Learn more →](https://explosion.ai/spacy-tailored-analysis)** |
[spacy 101]: https://spacy.io/usage/spacy-101
[new in v3.0]: https://spacy.io/usage/v3
@@ -59,6 +60,7 @@ open-source software, released under the [MIT license](https://github.com/explos
[changelog]: https://spacy.io/usage#changelog
[contribute]: https://github.com/explosion/spaCy/blob/master/CONTRIBUTING.md
+
## 💬 Where to ask questions
The spaCy project is maintained by the [spaCy team](https://explosion.ai/about).
diff --git a/build-constraints.txt b/build-constraints.txt
index 956973abf..c1e82f1b0 100644
--- a/build-constraints.txt
+++ b/build-constraints.txt
@@ -5,4 +5,5 @@ numpy==1.17.3; python_version=='3.8' and platform_machine!='aarch64'
numpy==1.19.2; python_version=='3.8' and platform_machine=='aarch64'
numpy==1.19.3; python_version=='3.9'
numpy==1.21.3; python_version=='3.10'
-numpy; python_version>='3.11'
+numpy==1.23.2; python_version=='3.11'
+numpy; python_version>='3.12'
diff --git a/requirements.txt b/requirements.txt
index 778c05e21..5bc1c8684 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,12 +1,12 @@
# Our libraries
-spacy-legacy>=3.0.10,<3.1.0
+spacy-legacy>=3.0.11,<3.1.0
spacy-loggers>=1.0.0,<2.0.0
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
thinc>=8.1.0,<8.2.0
ml_datasets>=0.2.0,<0.3.0
murmurhash>=0.28.0,<1.1.0
-wasabi>=0.9.1,<1.1.0
+wasabi>=0.9.1,<1.2.0
srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0
typer>=0.3.0,<0.8.0
diff --git a/setup.cfg b/setup.cfg
index 5768c9d3e..cee8c0c33 100644
--- a/setup.cfg
+++ b/setup.cfg
@@ -22,6 +22,7 @@ classifiers =
Programming Language :: Python :: 3.8
Programming Language :: Python :: 3.9
Programming Language :: Python :: 3.10
+ Programming Language :: Python :: 3.11
Topic :: Scientific/Engineering
project_urls =
Release notes = https://github.com/explosion/spaCy/releases
@@ -41,13 +42,13 @@ setup_requires =
thinc>=8.1.0,<8.2.0
install_requires =
# Our libraries
- spacy-legacy>=3.0.10,<3.1.0
+ spacy-legacy>=3.0.11,<3.1.0
spacy-loggers>=1.0.0,<2.0.0
murmurhash>=0.28.0,<1.1.0
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
thinc>=8.1.0,<8.2.0
- wasabi>=0.9.1,<1.1.0
+ wasabi>=0.9.1,<1.2.0
srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0
# Third-party dependencies
diff --git a/spacy/cli/__init__.py b/spacy/cli/__init__.py
index aab2c8d12..aabd1cfef 100644
--- a/spacy/cli/__init__.py
+++ b/spacy/cli/__init__.py
@@ -16,6 +16,7 @@ from .debug_config import debug_config # noqa: F401
from .debug_model import debug_model # noqa: F401
from .debug_diff import debug_diff # noqa: F401
from .evaluate import evaluate # noqa: F401
+from .apply import apply # noqa: F401
from .convert import convert # noqa: F401
from .init_pipeline import init_pipeline_cli # noqa: F401
from .init_config import init_config, fill_config # noqa: F401
diff --git a/spacy/cli/_util.py b/spacy/cli/_util.py
index 9b97a9f19..0f4e9f599 100644
--- a/spacy/cli/_util.py
+++ b/spacy/cli/_util.py
@@ -582,6 +582,33 @@ def setup_gpu(use_gpu: int, silent=None) -> None:
local_msg.info("To switch to GPU 0, use the option: --gpu-id 0")
+def walk_directory(path: Path, suffix: Optional[str] = None) -> List[Path]:
+ """Given a directory and a suffix, recursively find all files matching the suffix.
+ Directories or files with names beginning with a . are ignored, but hidden flags on
+ filesystems are not checked.
+ When provided with a suffix `None`, there is no suffix-based filtering."""
+ if not path.is_dir():
+ return [path]
+ paths = [path]
+ locs = []
+ seen = set()
+ for path in paths:
+ if str(path) in seen:
+ continue
+ seen.add(str(path))
+ if path.parts[-1].startswith("."):
+ continue
+ elif path.is_dir():
+ paths.extend(path.iterdir())
+ elif suffix is not None and not path.parts[-1].endswith(suffix):
+ continue
+ else:
+ locs.append(path)
+ # It's good to sort these, in case the ordering messes up cache.
+ locs.sort()
+ return locs
+
+
def _format_number(number: Union[int, float], ndigits: int = 2) -> str:
"""Formats a number (float or int) rounding to `ndigits`, without truncating trailing 0s,
as happens with `round(number, ndigits)`"""
diff --git a/spacy/cli/apply.py b/spacy/cli/apply.py
new file mode 100644
index 000000000..f0df4e757
--- /dev/null
+++ b/spacy/cli/apply.py
@@ -0,0 +1,143 @@
+import tqdm
+import srsly
+
+from itertools import chain
+from pathlib import Path
+from typing import Optional, List, Iterable, cast, Union
+
+from wasabi import msg
+
+from ._util import app, Arg, Opt, setup_gpu, import_code, walk_directory
+
+from ..tokens import Doc, DocBin
+from ..vocab import Vocab
+from ..util import ensure_path, load_model
+
+
+path_help = """Location of the documents to predict on.
+Can be a single file in .spacy format or a .jsonl file.
+Files with other extensions are treated as single plain text documents.
+If a directory is provided it is traversed recursively to grab
+all files to be processed.
+The files can be a mixture of .spacy, .jsonl and text files.
+If .jsonl is provided the specified field is going
+to be grabbed ("text" by default)."""
+
+out_help = "Path to save the resulting .spacy file"
+code_help = (
+ "Path to Python file with additional " "code (registered functions) to be imported"
+)
+gold_help = "Use gold preprocessing provided in the .spacy files"
+force_msg = (
+ "The provided output file already exists. "
+ "To force overwriting the output file, set the --force or -F flag."
+)
+
+
+DocOrStrStream = Union[Iterable[str], Iterable[Doc]]
+
+
+def _stream_docbin(path: Path, vocab: Vocab) -> Iterable[Doc]:
+ """
+ Stream Doc objects from DocBin.
+ """
+ docbin = DocBin().from_disk(path)
+ for doc in docbin.get_docs(vocab):
+ yield doc
+
+
+def _stream_jsonl(path: Path, field: str) -> Iterable[str]:
+ """
+ Stream "text" field from JSONL. If the field "text" is
+ not found it raises error.
+ """
+ for entry in srsly.read_jsonl(path):
+ if field not in entry:
+ msg.fail(f"{path} does not contain the required '{field}' field.", exits=1)
+ else:
+ yield entry[field]
+
+
+def _stream_texts(paths: Iterable[Path]) -> Iterable[str]:
+ """
+ Yields strings from text files in paths.
+ """
+ for path in paths:
+ with open(path, "r") as fin:
+ text = fin.read()
+ yield text
+
+
+@app.command("apply")
+def apply_cli(
+ # fmt: off
+ model: str = Arg(..., help="Model name or path"),
+ data_path: Path = Arg(..., help=path_help, exists=True),
+ output_file: Path = Arg(..., help=out_help, dir_okay=False),
+ code_path: Optional[Path] = Opt(None, "--code", "-c", help=code_help),
+ text_key: str = Opt("text", "--text-key", "-tk", help="Key containing text string for JSONL"),
+ force_overwrite: bool = Opt(False, "--force", "-F", help="Force overwriting the output file"),
+ use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU."),
+ batch_size: int = Opt(1, "--batch-size", "-b", help="Batch size."),
+ n_process: int = Opt(1, "--n-process", "-n", help="number of processors to use.")
+):
+ """
+ Apply a trained pipeline to documents to get predictions.
+ Expects a loadable spaCy pipeline and path to the data, which
+ can be a directory or a file.
+ The data files can be provided in multiple formats:
+ 1. .spacy files
+ 2. .jsonl files with a specified "field" to read the text from.
+ 3. Files with any other extension are assumed to be containing
+ a single document.
+ DOCS: https://spacy.io/api/cli#apply
+ """
+ data_path = ensure_path(data_path)
+ output_file = ensure_path(output_file)
+ code_path = ensure_path(code_path)
+ if output_file.exists() and not force_overwrite:
+ msg.fail(force_msg, exits=1)
+ if not data_path.exists():
+ msg.fail(f"Couldn't find data path: {data_path}", exits=1)
+ import_code(code_path)
+ setup_gpu(use_gpu)
+ apply(data_path, output_file, model, text_key, batch_size, n_process)
+
+
+def apply(
+ data_path: Path,
+ output_file: Path,
+ model: str,
+ json_field: str,
+ batch_size: int,
+ n_process: int,
+):
+ docbin = DocBin(store_user_data=True)
+ paths = walk_directory(data_path)
+ if len(paths) == 0:
+ docbin.to_disk(output_file)
+ msg.warn(
+ "Did not find data to process,"
+ f" {data_path} seems to be an empty directory."
+ )
+ return
+ nlp = load_model(model)
+ msg.good(f"Loaded model {model}")
+ vocab = nlp.vocab
+ streams: List[DocOrStrStream] = []
+ text_files = []
+ for path in paths:
+ if path.suffix == ".spacy":
+ streams.append(_stream_docbin(path, vocab))
+ elif path.suffix == ".jsonl":
+ streams.append(_stream_jsonl(path, json_field))
+ else:
+ text_files.append(path)
+ if len(text_files) > 0:
+ streams.append(_stream_texts(text_files))
+ datagen = cast(DocOrStrStream, chain(*streams))
+ for doc in tqdm.tqdm(nlp.pipe(datagen, batch_size=batch_size, n_process=n_process)):
+ docbin.add(doc)
+ if output_file.suffix == "":
+ output_file = output_file.with_suffix(".spacy")
+ docbin.to_disk(output_file)
diff --git a/spacy/cli/convert.py b/spacy/cli/convert.py
index 04eb7078f..68d454b3e 100644
--- a/spacy/cli/convert.py
+++ b/spacy/cli/convert.py
@@ -1,4 +1,4 @@
-from typing import Callable, Iterable, Mapping, Optional, Any, List, Union
+from typing import Callable, Iterable, Mapping, Optional, Any, Union
from enum import Enum
from pathlib import Path
from wasabi import Printer
@@ -7,7 +7,7 @@ import re
import sys
import itertools
-from ._util import app, Arg, Opt
+from ._util import app, Arg, Opt, walk_directory
from ..training import docs_to_json
from ..tokens import Doc, DocBin
from ..training.converters import iob_to_docs, conll_ner_to_docs, json_to_docs
@@ -28,6 +28,8 @@ CONVERTERS: Mapping[str, Callable[..., Iterable[Doc]]] = {
"json": json_to_docs,
}
+AUTO = "auto"
+
# File types that can be written to stdout
FILE_TYPES_STDOUT = ("json",)
@@ -49,7 +51,7 @@ def convert_cli(
model: Optional[str] = Opt(None, "--model", "--base", "-b", help="Trained spaCy pipeline for sentence segmentation to use as base (for --seg-sents)"),
morphology: bool = Opt(False, "--morphology", "-m", help="Enable appending morphology to tags"),
merge_subtokens: bool = Opt(False, "--merge-subtokens", "-T", help="Merge CoNLL-U subtokens"),
- converter: str = Opt("auto", "--converter", "-c", help=f"Converter: {tuple(CONVERTERS.keys())}"),
+ converter: str = Opt(AUTO, "--converter", "-c", help=f"Converter: {tuple(CONVERTERS.keys())}"),
ner_map: Optional[Path] = Opt(None, "--ner-map", "-nm", help="NER tag mapping (as JSON-encoded dict of entity types)", exists=True),
lang: Optional[str] = Opt(None, "--lang", "-l", help="Language (if tokenizer required)"),
concatenate: bool = Opt(None, "--concatenate", "-C", help="Concatenate output to a single file"),
@@ -70,8 +72,8 @@ def convert_cli(
output_dir: Union[str, Path] = "-" if output_dir == Path("-") else output_dir
silent = output_dir == "-"
msg = Printer(no_print=silent)
- verify_cli_args(msg, input_path, output_dir, file_type.value, converter, ner_map)
converter = _get_converter(msg, converter, input_path)
+ verify_cli_args(msg, input_path, output_dir, file_type.value, converter, ner_map)
convert(
input_path,
output_dir,
@@ -100,7 +102,7 @@ def convert(
model: Optional[str] = None,
morphology: bool = False,
merge_subtokens: bool = False,
- converter: str = "auto",
+ converter: str,
ner_map: Optional[Path] = None,
lang: Optional[str] = None,
concatenate: bool = False,
@@ -189,33 +191,6 @@ def autodetect_ner_format(input_data: str) -> Optional[str]:
return None
-def walk_directory(path: Path, converter: str) -> List[Path]:
- if not path.is_dir():
- return [path]
- paths = [path]
- locs = []
- seen = set()
- for path in paths:
- if str(path) in seen:
- continue
- seen.add(str(path))
- if path.parts[-1].startswith("."):
- continue
- elif path.is_dir():
- paths.extend(path.iterdir())
- elif converter == "json" and not path.parts[-1].endswith("json"):
- continue
- elif converter == "conll" and not path.parts[-1].endswith("conll"):
- continue
- elif converter == "iob" and not path.parts[-1].endswith("iob"):
- continue
- else:
- locs.append(path)
- # It's good to sort these, in case the ordering messes up cache.
- locs.sort()
- return locs
-
-
def verify_cli_args(
msg: Printer,
input_path: Path,
@@ -239,18 +214,22 @@ def verify_cli_args(
input_locs = walk_directory(input_path, converter)
if len(input_locs) == 0:
msg.fail("No input files in directory", input_path, exits=1)
- file_types = list(set([loc.suffix[1:] for loc in input_locs]))
- if converter == "auto" and len(file_types) >= 2:
- file_types_str = ",".join(file_types)
- msg.fail("All input files must be same type", file_types_str, exits=1)
- if converter != "auto" and converter not in CONVERTERS:
+ if converter not in CONVERTERS:
msg.fail(f"Can't find converter for {converter}", exits=1)
def _get_converter(msg, converter, input_path: Path):
if input_path.is_dir():
- input_path = walk_directory(input_path, converter)[0]
- if converter == "auto":
+ if converter == AUTO:
+ input_locs = walk_directory(input_path, suffix=None)
+ file_types = list(set([loc.suffix[1:] for loc in input_locs]))
+ if len(file_types) >= 2:
+ file_types_str = ",".join(file_types)
+ msg.fail("All input files must be same type", file_types_str, exits=1)
+ input_path = input_locs[0]
+ else:
+ input_path = walk_directory(input_path, suffix=converter)[0]
+ if converter == AUTO:
converter = input_path.suffix[1:]
if converter == "ner" or converter == "iob":
with input_path.open(encoding="utf8") as file_:
diff --git a/spacy/displacy/__init__.py b/spacy/displacy/__init__.py
index bc32001d7..a3cfd96dd 100644
--- a/spacy/displacy/__init__.py
+++ b/spacy/displacy/__init__.py
@@ -11,6 +11,7 @@ from .render import DependencyRenderer, EntityRenderer, SpanRenderer
from ..tokens import Doc, Span
from ..errors import Errors, Warnings
from ..util import is_in_jupyter
+from ..util import find_available_port
_html = {}
@@ -36,7 +37,7 @@ def render(
jupyter (bool): Override Jupyter auto-detection.
options (dict): Visualiser-specific options, e.g. colors.
manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts.
- RETURNS (str): Rendered HTML markup.
+ RETURNS (str): Rendered SVG or HTML markup.
DOCS: https://spacy.io/api/top-level#displacy.render
USAGE: https://spacy.io/usage/visualizers
@@ -82,6 +83,7 @@ def serve(
manual: bool = False,
port: int = 5000,
host: str = "0.0.0.0",
+ auto_select_port: bool = False,
) -> None:
"""Serve displaCy visualisation.
@@ -93,15 +95,20 @@ def serve(
manual (bool): Don't parse `Doc` and instead expect a dict/list of dicts.
port (int): Port to serve visualisation.
host (str): Host to serve visualisation.
+ auto_select_port (bool): Automatically select a port if the specified port is in use.
DOCS: https://spacy.io/api/top-level#displacy.serve
USAGE: https://spacy.io/usage/visualizers
"""
from wsgiref import simple_server
+ port = find_available_port(port, host, auto_select_port)
+
if is_in_jupyter():
warnings.warn(Warnings.W011)
- render(docs, style=style, page=page, minify=minify, options=options, manual=manual)
+ render(
+ docs, style=style, page=page, minify=minify, options=options, manual=manual
+ )
httpd = simple_server.make_server(host, port, app)
print(f"\nUsing the '{style}' visualizer")
print(f"Serving on http://{host}:{port} ...\n")
diff --git a/spacy/displacy/render.py b/spacy/displacy/render.py
index 50dc3466c..f74222dc2 100644
--- a/spacy/displacy/render.py
+++ b/spacy/displacy/render.py
@@ -94,7 +94,7 @@ class SpanRenderer:
parsed (list): Dependency parses to render.
page (bool): Render parses wrapped as full HTML page.
minify (bool): Minify HTML markup.
- RETURNS (str): Rendered HTML markup.
+ RETURNS (str): Rendered SVG or HTML markup.
"""
rendered = []
for i, p in enumerate(parsed):
@@ -510,7 +510,7 @@ class EntityRenderer:
parsed (list): Dependency parses to render.
page (bool): Render parses wrapped as full HTML page.
minify (bool): Minify HTML markup.
- RETURNS (str): Rendered HTML markup.
+ RETURNS (str): Rendered SVG or HTML markup.
"""
rendered = []
for i, p in enumerate(parsed):
diff --git a/spacy/errors.py b/spacy/errors.py
index e34614b0f..498df0320 100644
--- a/spacy/errors.py
+++ b/spacy/errors.py
@@ -214,6 +214,7 @@ class Warnings(metaclass=ErrorsWithCodes):
"is a Cython extension type.")
W123 = ("Argument `enable` with value {enable} does not contain all values specified in the config option "
"`enabled` ({enabled}). Be aware that this might affect other components in your pipeline.")
+ W124 = ("{host}:{port} is already in use, using the nearest available port {serve_port} as an alternative.")
class Errors(metaclass=ErrorsWithCodes):
@@ -345,6 +346,11 @@ class Errors(metaclass=ErrorsWithCodes):
"clear the existing vectors and resize the table.")
E074 = ("Error interpreting compiled match pattern: patterns are expected "
"to end with the attribute {attr}. Got: {bad_attr}.")
+ E079 = ("Error computing states in beam: number of predicted beams "
+ "({pbeams}) does not equal number of gold beams ({gbeams}).")
+ E080 = ("Duplicate state found in beam: {key}.")
+ E081 = ("Error getting gradient in beam: number of histories ({n_hist}) "
+ "does not equal number of losses ({losses}).")
E082 = ("Error deprojectivizing parse: number of heads ({n_heads}), "
"projective heads ({n_proj_heads}) and labels ({n_labels}) do not "
"match.")
@@ -957,6 +963,11 @@ class Errors(metaclass=ErrorsWithCodes):
E1046 = ("{cls_name} is an abstract class and cannot be instantiated. If you are looking for spaCy's default "
"knowledge base, use `InMemoryLookupKB`.")
E1047 = ("`find_threshold()` only supports components with a `scorer` attribute.")
+ E1048 = ("Got '{unexpected}' as console progress bar type, but expected one of the following: {expected}")
+ E1049 = ("No available port found for displaCy on host {host}. Please specify an available port "
+ "with `displacy.serve(doc, port)`")
+ E1050 = ("Port {port} is already in use. Please specify an available port with `displacy.serve(doc, port)` "
+ "or use `auto_switch_port=True` to pick an available port automatically.")
# Deprecated model shortcuts, only used in errors and warnings
diff --git a/spacy/lang/nl/stop_words.py b/spacy/lang/nl/stop_words.py
index a2c6198e7..cd4fdefdf 100644
--- a/spacy/lang/nl/stop_words.py
+++ b/spacy/lang/nl/stop_words.py
@@ -15,7 +15,7 @@
STOP_WORDS = set(
"""
-aan af al alle alles allebei alleen allen als altijd ander anders andere anderen aangaangde aangezien achter achterna
+aan af al alle alles allebei alleen allen als altijd ander anders andere anderen aangaande aangezien achter achterna
afgelopen aldus alhoewel anderzijds
ben bij bijna bijvoorbeeld behalve beide beiden beneden bent bepaald beter betere betreffende binnen binnenin boven
diff --git a/spacy/matcher/levenshtein.pyx b/spacy/matcher/levenshtein.pyx
index 8463d913d..0e8cd26da 100644
--- a/spacy/matcher/levenshtein.pyx
+++ b/spacy/matcher/levenshtein.pyx
@@ -4,6 +4,8 @@ from libc.stdint cimport int64_t
from typing import Optional
+from ..util import registry
+
cdef extern from "polyleven.c":
int64_t polyleven(PyObject *o1, PyObject *o2, int64_t k)
@@ -13,3 +15,18 @@ cpdef int64_t levenshtein(a: str, b: str, k: Optional[int] = None):
if k is None:
k = -1
return polyleven(a, b, k)
+
+
+cpdef bint levenshtein_compare(input_text: str, pattern_text: str, fuzzy: int = -1):
+ if fuzzy >= 0:
+ max_edits = fuzzy
+ else:
+ # allow at least two edits (to allow at least one transposition) and up
+ # to 20% of the pattern string length
+ max_edits = max(2, round(0.3 * len(pattern_text)))
+ return levenshtein(input_text, pattern_text, max_edits) <= max_edits
+
+
+@registry.misc("spacy.levenshtein_compare.v1")
+def make_levenshtein_compare():
+ return levenshtein_compare
diff --git a/spacy/matcher/matcher.pxd b/spacy/matcher/matcher.pxd
index 455f978cc..51854d562 100644
--- a/spacy/matcher/matcher.pxd
+++ b/spacy/matcher/matcher.pxd
@@ -77,3 +77,4 @@ cdef class Matcher:
cdef public object _extensions
cdef public object _extra_predicates
cdef public object _seen_attrs
+ cdef public object _fuzzy_compare
diff --git a/spacy/matcher/matcher.pyi b/spacy/matcher/matcher.pyi
index 390629ff8..77ea7b7a6 100644
--- a/spacy/matcher/matcher.pyi
+++ b/spacy/matcher/matcher.pyi
@@ -5,7 +5,8 @@ from ..vocab import Vocab
from ..tokens import Doc, Span
class Matcher:
- def __init__(self, vocab: Vocab, validate: bool = ...) -> None: ...
+ def __init__(self, vocab: Vocab, validate: bool = ...,
+ fuzzy_compare: Callable[[str, str, int], bool] = ...) -> None: ...
def __reduce__(self) -> Any: ...
def __len__(self) -> int: ...
def __contains__(self, key: str) -> bool: ...
diff --git a/spacy/matcher/matcher.pyx b/spacy/matcher/matcher.pyx
index c4a057ca0..ea1b4b66b 100644
--- a/spacy/matcher/matcher.pyx
+++ b/spacy/matcher/matcher.pyx
@@ -1,4 +1,4 @@
-# cython: infer_types=True, profile=True
+# cython: binding=True, infer_types=True, profile=True
from typing import List, Iterable
from libcpp.vector cimport vector
@@ -20,10 +20,12 @@ from ..tokens.token cimport Token
from ..tokens.morphanalysis cimport MorphAnalysis
from ..attrs cimport ID, attr_id_t, NULL_ATTR, ORTH, POS, TAG, DEP, LEMMA, MORPH, ENT_IOB
+from .levenshtein import levenshtein_compare
from ..schemas import validate_token_pattern
from ..errors import Errors, MatchPatternError, Warnings
from ..strings import get_string_id
from ..attrs import IDS
+from ..util import registry
DEF PADDING = 5
@@ -36,11 +38,13 @@ cdef class Matcher:
USAGE: https://spacy.io/usage/rule-based-matching
"""
- def __init__(self, vocab, validate=True):
+ def __init__(self, vocab, validate=True, *, fuzzy_compare=levenshtein_compare):
"""Create the Matcher.
vocab (Vocab): The vocabulary object, which must be shared with the
- documents the matcher will operate on.
+ validate (bool): Validate all patterns added to this matcher.
+ fuzzy_compare (Callable[[str, str, int], bool]): The comparison method
+ for the FUZZY operators.
"""
self._extra_predicates = []
self._patterns = {}
@@ -51,9 +55,10 @@ cdef class Matcher:
self.vocab = vocab
self.mem = Pool()
self.validate = validate
+ self._fuzzy_compare = fuzzy_compare
def __reduce__(self):
- data = (self.vocab, self._patterns, self._callbacks)
+ data = (self.vocab, self._patterns, self._callbacks, self.validate, self._fuzzy_compare)
return (unpickle_matcher, data, None, None)
def __len__(self):
@@ -128,7 +133,7 @@ cdef class Matcher:
for pattern in patterns:
try:
specs = _preprocess_pattern(pattern, self.vocab,
- self._extensions, self._extra_predicates)
+ self._extensions, self._extra_predicates, self._fuzzy_compare)
self.patterns.push_back(init_pattern(self.mem, key, specs))
for spec in specs:
for attr, _ in spec[1]:
@@ -326,8 +331,8 @@ cdef class Matcher:
return key
-def unpickle_matcher(vocab, patterns, callbacks):
- matcher = Matcher(vocab)
+def unpickle_matcher(vocab, patterns, callbacks, validate, fuzzy_compare):
+ matcher = Matcher(vocab, validate=validate, fuzzy_compare=fuzzy_compare)
for key, pattern in patterns.items():
callback = callbacks.get(key, None)
matcher.add(key, pattern, on_match=callback)
@@ -754,7 +759,7 @@ cdef attr_t get_ent_id(const TokenPatternC* pattern) nogil:
return id_attr.value
-def _preprocess_pattern(token_specs, vocab, extensions_table, extra_predicates):
+def _preprocess_pattern(token_specs, vocab, extensions_table, extra_predicates, fuzzy_compare):
"""This function interprets the pattern, converting the various bits of
syntactic sugar before we compile it into a struct with init_pattern.
@@ -781,7 +786,7 @@ def _preprocess_pattern(token_specs, vocab, extensions_table, extra_predicates):
ops = _get_operators(spec)
attr_values = _get_attr_values(spec, string_store)
extensions = _get_extensions(spec, string_store, extensions_table)
- predicates = _get_extra_predicates(spec, extra_predicates, vocab)
+ predicates = _get_extra_predicates(spec, extra_predicates, vocab, fuzzy_compare)
for op in ops:
tokens.append((op, list(attr_values), list(extensions), list(predicates), token_idx))
return tokens
@@ -826,16 +831,45 @@ def _get_attr_values(spec, string_store):
# These predicate helper classes are used to match the REGEX, IN, >= etc
# extensions to the matcher introduced in #3173.
+class _FuzzyPredicate:
+ operators = ("FUZZY", "FUZZY1", "FUZZY2", "FUZZY3", "FUZZY4", "FUZZY5",
+ "FUZZY6", "FUZZY7", "FUZZY8", "FUZZY9")
+
+ def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None,
+ regex=False, fuzzy=None, fuzzy_compare=None):
+ self.i = i
+ self.attr = attr
+ self.value = value
+ self.predicate = predicate
+ self.is_extension = is_extension
+ if self.predicate not in self.operators:
+ raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate))
+ fuzz = self.predicate[len("FUZZY"):] # number after prefix
+ self.fuzzy = int(fuzz) if fuzz else -1
+ self.fuzzy_compare = fuzzy_compare
+ self.key = (self.attr, self.fuzzy, self.predicate, srsly.json_dumps(value, sort_keys=True))
+
+ def __call__(self, Token token):
+ if self.is_extension:
+ value = token._.get(self.attr)
+ else:
+ value = token.vocab.strings[get_token_attr_for_matcher(token.c, self.attr)]
+ if self.value == value:
+ return True
+ return self.fuzzy_compare(value, self.value, self.fuzzy)
+
+
class _RegexPredicate:
operators = ("REGEX",)
- def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None):
+ def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None,
+ regex=False, fuzzy=None, fuzzy_compare=None):
self.i = i
self.attr = attr
self.value = re.compile(value)
self.predicate = predicate
self.is_extension = is_extension
- self.key = (attr, self.predicate, srsly.json_dumps(value, sort_keys=True))
+ self.key = (self.attr, self.predicate, srsly.json_dumps(value, sort_keys=True))
if self.predicate not in self.operators:
raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate))
@@ -850,18 +884,28 @@ class _RegexPredicate:
class _SetPredicate:
operators = ("IN", "NOT_IN", "IS_SUBSET", "IS_SUPERSET", "INTERSECTS")
- def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None):
+ def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None,
+ regex=False, fuzzy=None, fuzzy_compare=None):
self.i = i
self.attr = attr
self.vocab = vocab
+ self.regex = regex
+ self.fuzzy = fuzzy
+ self.fuzzy_compare = fuzzy_compare
if self.attr == MORPH:
# normalize morph strings
self.value = set(self.vocab.morphology.add(v) for v in value)
else:
- self.value = set(get_string_id(v) for v in value)
+ if self.regex:
+ self.value = set(re.compile(v) for v in value)
+ elif self.fuzzy is not None:
+ # add to string store
+ self.value = set(self.vocab.strings.add(v) for v in value)
+ else:
+ self.value = set(get_string_id(v) for v in value)
self.predicate = predicate
self.is_extension = is_extension
- self.key = (attr, self.predicate, srsly.json_dumps(value, sort_keys=True))
+ self.key = (self.attr, self.regex, self.fuzzy, self.predicate, srsly.json_dumps(value, sort_keys=True))
if self.predicate not in self.operators:
raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate))
@@ -889,9 +933,29 @@ class _SetPredicate:
return False
if self.predicate == "IN":
- return value in self.value
+ if self.regex:
+ value = self.vocab.strings[value]
+ return any(bool(v.search(value)) for v in self.value)
+ elif self.fuzzy is not None:
+ value = self.vocab.strings[value]
+ return any(self.fuzzy_compare(value, self.vocab.strings[v], self.fuzzy)
+ for v in self.value)
+ elif value in self.value:
+ return True
+ else:
+ return False
elif self.predicate == "NOT_IN":
- return value not in self.value
+ if self.regex:
+ value = self.vocab.strings[value]
+ return not any(bool(v.search(value)) for v in self.value)
+ elif self.fuzzy is not None:
+ value = self.vocab.strings[value]
+ return not any(self.fuzzy_compare(value, self.vocab.strings[v], self.fuzzy)
+ for v in self.value)
+ elif value in self.value:
+ return False
+ else:
+ return True
elif self.predicate == "IS_SUBSET":
return value <= self.value
elif self.predicate == "IS_SUPERSET":
@@ -906,13 +970,14 @@ class _SetPredicate:
class _ComparisonPredicate:
operators = ("==", "!=", ">=", "<=", ">", "<")
- def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None):
+ def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None,
+ regex=False, fuzzy=None, fuzzy_compare=None):
self.i = i
self.attr = attr
self.value = value
self.predicate = predicate
self.is_extension = is_extension
- self.key = (attr, self.predicate, srsly.json_dumps(value, sort_keys=True))
+ self.key = (self.attr, self.predicate, srsly.json_dumps(value, sort_keys=True))
if self.predicate not in self.operators:
raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate))
@@ -935,7 +1000,7 @@ class _ComparisonPredicate:
return value < self.value
-def _get_extra_predicates(spec, extra_predicates, vocab):
+def _get_extra_predicates(spec, extra_predicates, vocab, fuzzy_compare):
predicate_types = {
"REGEX": _RegexPredicate,
"IN": _SetPredicate,
@@ -949,6 +1014,16 @@ def _get_extra_predicates(spec, extra_predicates, vocab):
"<=": _ComparisonPredicate,
">": _ComparisonPredicate,
"<": _ComparisonPredicate,
+ "FUZZY": _FuzzyPredicate,
+ "FUZZY1": _FuzzyPredicate,
+ "FUZZY2": _FuzzyPredicate,
+ "FUZZY3": _FuzzyPredicate,
+ "FUZZY4": _FuzzyPredicate,
+ "FUZZY5": _FuzzyPredicate,
+ "FUZZY6": _FuzzyPredicate,
+ "FUZZY7": _FuzzyPredicate,
+ "FUZZY8": _FuzzyPredicate,
+ "FUZZY9": _FuzzyPredicate,
}
seen_predicates = {pred.key: pred.i for pred in extra_predicates}
output = []
@@ -966,22 +1041,47 @@ def _get_extra_predicates(spec, extra_predicates, vocab):
attr = "ORTH"
attr = IDS.get(attr.upper())
if isinstance(value, dict):
- processed = False
- value_with_upper_keys = {k.upper(): v for k, v in value.items()}
- for type_, cls in predicate_types.items():
- if type_ in value_with_upper_keys:
- predicate = cls(len(extra_predicates), attr, value_with_upper_keys[type_], type_, vocab=vocab)
- # Don't create a redundant predicates.
- # This helps with efficiency, as we're caching the results.
- if predicate.key in seen_predicates:
- output.append(seen_predicates[predicate.key])
- else:
- extra_predicates.append(predicate)
- output.append(predicate.i)
- seen_predicates[predicate.key] = predicate.i
- processed = True
- if not processed:
- warnings.warn(Warnings.W035.format(pattern=value))
+ output.extend(_get_extra_predicates_dict(attr, value, vocab, predicate_types,
+ extra_predicates, seen_predicates, fuzzy_compare=fuzzy_compare))
+ return output
+
+
+def _get_extra_predicates_dict(attr, value_dict, vocab, predicate_types,
+ extra_predicates, seen_predicates, regex=False, fuzzy=None, fuzzy_compare=None):
+ output = []
+ for type_, value in value_dict.items():
+ type_ = type_.upper()
+ cls = predicate_types.get(type_)
+ if cls is None:
+ warnings.warn(Warnings.W035.format(pattern=value_dict))
+ # ignore unrecognized predicate type
+ continue
+ elif cls == _RegexPredicate:
+ if isinstance(value, dict):
+ # add predicates inside regex operator
+ output.extend(_get_extra_predicates_dict(attr, value, vocab, predicate_types,
+ extra_predicates, seen_predicates,
+ regex=True))
+ continue
+ elif cls == _FuzzyPredicate:
+ if isinstance(value, dict):
+ # add predicates inside fuzzy operator
+ fuzz = type_[len("FUZZY"):] # number after prefix
+ fuzzy_val = int(fuzz) if fuzz else -1
+ output.extend(_get_extra_predicates_dict(attr, value, vocab, predicate_types,
+ extra_predicates, seen_predicates,
+ fuzzy=fuzzy_val, fuzzy_compare=fuzzy_compare))
+ continue
+ predicate = cls(len(extra_predicates), attr, value, type_, vocab=vocab,
+ regex=regex, fuzzy=fuzzy, fuzzy_compare=fuzzy_compare)
+ # Don't create redundant predicates.
+ # This helps with efficiency, as we're caching the results.
+ if predicate.key in seen_predicates:
+ output.append(seen_predicates[predicate.key])
+ else:
+ extra_predicates.append(predicate)
+ output.append(predicate.i)
+ seen_predicates[predicate.key] = predicate.i
return output
diff --git a/spacy/pipeline/entityruler.py b/spacy/pipeline/entityruler.py
index 8154a077d..6a3755533 100644
--- a/spacy/pipeline/entityruler.py
+++ b/spacy/pipeline/entityruler.py
@@ -11,6 +11,7 @@ from ..errors import Errors, Warnings
from ..util import ensure_path, to_disk, from_disk, SimpleFrozenList, registry
from ..tokens import Doc, Span
from ..matcher import Matcher, PhraseMatcher
+from ..matcher.levenshtein import levenshtein_compare
from ..scorer import get_ner_prf
@@ -23,6 +24,7 @@ PatternType = Dict[str, Union[str, List[Dict[str, Any]]]]
assigns=["doc.ents", "token.ent_type", "token.ent_iob"],
default_config={
"phrase_matcher_attr": None,
+ "matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
"validate": False,
"overwrite_ents": False,
"ent_id_sep": DEFAULT_ENT_ID_SEP,
@@ -39,6 +41,7 @@ def make_entity_ruler(
nlp: Language,
name: str,
phrase_matcher_attr: Optional[Union[int, str]],
+ matcher_fuzzy_compare: Callable,
validate: bool,
overwrite_ents: bool,
ent_id_sep: str,
@@ -48,6 +51,7 @@ def make_entity_ruler(
nlp,
name,
phrase_matcher_attr=phrase_matcher_attr,
+ matcher_fuzzy_compare=matcher_fuzzy_compare,
validate=validate,
overwrite_ents=overwrite_ents,
ent_id_sep=ent_id_sep,
@@ -81,6 +85,7 @@ class EntityRuler(Pipe):
name: str = "entity_ruler",
*,
phrase_matcher_attr: Optional[Union[int, str]] = None,
+ matcher_fuzzy_compare: Callable = levenshtein_compare,
validate: bool = False,
overwrite_ents: bool = False,
ent_id_sep: str = DEFAULT_ENT_ID_SEP,
@@ -99,7 +104,10 @@ class EntityRuler(Pipe):
added. Used to disable the current entity ruler while creating
phrase patterns with the nlp object.
phrase_matcher_attr (int / str): Token attribute to match on, passed
- to the internal PhraseMatcher as `attr`
+ to the internal PhraseMatcher as `attr`.
+ matcher_fuzzy_compare (Callable): The fuzzy comparison method for the
+ internal Matcher. Defaults to
+ spacy.matcher.levenshtein.levenshtein_compare.
validate (bool): Whether patterns should be validated, passed to
Matcher and PhraseMatcher as `validate`
patterns (iterable): Optional patterns to load in.
@@ -117,7 +125,10 @@ class EntityRuler(Pipe):
self.token_patterns = defaultdict(list) # type: ignore
self.phrase_patterns = defaultdict(list) # type: ignore
self._validate = validate
- self.matcher = Matcher(nlp.vocab, validate=validate)
+ self.matcher_fuzzy_compare = matcher_fuzzy_compare
+ self.matcher = Matcher(
+ nlp.vocab, validate=validate, fuzzy_compare=self.matcher_fuzzy_compare
+ )
self.phrase_matcher_attr = phrase_matcher_attr
self.phrase_matcher = PhraseMatcher(
nlp.vocab, attr=self.phrase_matcher_attr, validate=validate
@@ -337,7 +348,11 @@ class EntityRuler(Pipe):
self.token_patterns = defaultdict(list)
self.phrase_patterns = defaultdict(list)
self._ent_ids = defaultdict(tuple)
- self.matcher = Matcher(self.nlp.vocab, validate=self._validate)
+ self.matcher = Matcher(
+ self.nlp.vocab,
+ validate=self._validate,
+ fuzzy_compare=self.matcher_fuzzy_compare,
+ )
self.phrase_matcher = PhraseMatcher(
self.nlp.vocab, attr=self.phrase_matcher_attr, validate=self._validate
)
@@ -431,7 +446,8 @@ class EntityRuler(Pipe):
self.overwrite = cfg.get("overwrite", False)
self.phrase_matcher_attr = cfg.get("phrase_matcher_attr", None)
self.phrase_matcher = PhraseMatcher(
- self.nlp.vocab, attr=self.phrase_matcher_attr
+ self.nlp.vocab,
+ attr=self.phrase_matcher_attr,
)
self.ent_id_sep = cfg.get("ent_id_sep", DEFAULT_ENT_ID_SEP)
else:
diff --git a/spacy/pipeline/span_ruler.py b/spacy/pipeline/span_ruler.py
index 807a4ffe5..b0669c0ef 100644
--- a/spacy/pipeline/span_ruler.py
+++ b/spacy/pipeline/span_ruler.py
@@ -13,6 +13,7 @@ from ..util import ensure_path, SimpleFrozenList, registry
from ..tokens import Doc, Span
from ..scorer import Scorer
from ..matcher import Matcher, PhraseMatcher
+from ..matcher.levenshtein import levenshtein_compare
from .. import util
PatternType = Dict[str, Union[str, List[Dict[str, Any]]]]
@@ -28,6 +29,7 @@ DEFAULT_SPANS_KEY = "ruler"
"overwrite_ents": False,
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
"ent_id_sep": "__unused__",
+ "matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
},
default_score_weights={
"ents_f": 1.0,
@@ -40,6 +42,7 @@ def make_entity_ruler(
nlp: Language,
name: str,
phrase_matcher_attr: Optional[Union[int, str]],
+ matcher_fuzzy_compare: Callable,
validate: bool,
overwrite_ents: bool,
scorer: Optional[Callable],
@@ -57,6 +60,7 @@ def make_entity_ruler(
annotate_ents=True,
ents_filter=ents_filter,
phrase_matcher_attr=phrase_matcher_attr,
+ matcher_fuzzy_compare=matcher_fuzzy_compare,
validate=validate,
overwrite=False,
scorer=scorer,
@@ -72,6 +76,7 @@ def make_entity_ruler(
"annotate_ents": False,
"ents_filter": {"@misc": "spacy.first_longest_spans_filter.v1"},
"phrase_matcher_attr": None,
+ "matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
"validate": False,
"overwrite": True,
"scorer": {
@@ -94,6 +99,7 @@ def make_span_ruler(
annotate_ents: bool,
ents_filter: Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]],
phrase_matcher_attr: Optional[Union[int, str]],
+ matcher_fuzzy_compare: Callable,
validate: bool,
overwrite: bool,
scorer: Optional[Callable],
@@ -106,6 +112,7 @@ def make_span_ruler(
annotate_ents=annotate_ents,
ents_filter=ents_filter,
phrase_matcher_attr=phrase_matcher_attr,
+ matcher_fuzzy_compare=matcher_fuzzy_compare,
validate=validate,
overwrite=overwrite,
scorer=scorer,
@@ -170,7 +177,7 @@ def prioritize_existing_ents_filter(
@registry.misc("spacy.prioritize_existing_ents_filter.v1")
-def make_preverse_existing_ents_filter():
+def make_preserve_existing_ents_filter():
return prioritize_existing_ents_filter
@@ -216,6 +223,7 @@ class SpanRuler(Pipe):
[Iterable[Span], Iterable[Span]], Iterable[Span]
] = util.filter_chain_spans,
phrase_matcher_attr: Optional[Union[int, str]] = None,
+ matcher_fuzzy_compare: Callable = levenshtein_compare,
validate: bool = False,
overwrite: bool = False,
scorer: Optional[Callable] = partial(
@@ -246,6 +254,9 @@ class SpanRuler(Pipe):
phrase_matcher_attr (Optional[Union[int, str]]): Token attribute to
match on, passed to the internal PhraseMatcher as `attr`. Defaults
to `None`.
+ matcher_fuzzy_compare (Callable): The fuzzy comparison method for the
+ internal Matcher. Defaults to
+ spacy.matcher.levenshtein.levenshtein_compare.
validate (bool): Whether patterns should be validated, passed to
Matcher and PhraseMatcher as `validate`.
overwrite (bool): Whether to remove any existing spans under this spans
@@ -266,6 +277,7 @@ class SpanRuler(Pipe):
self.spans_filter = spans_filter
self.ents_filter = ents_filter
self.scorer = scorer
+ self.matcher_fuzzy_compare = matcher_fuzzy_compare
self._match_label_id_map: Dict[int, Dict[str, str]] = {}
self.clear()
@@ -451,7 +463,11 @@ class SpanRuler(Pipe):
DOCS: https://spacy.io/api/spanruler#clear
"""
self._patterns: List[PatternType] = []
- self.matcher: Matcher = Matcher(self.nlp.vocab, validate=self.validate)
+ self.matcher: Matcher = Matcher(
+ self.nlp.vocab,
+ validate=self.validate,
+ fuzzy_compare=self.matcher_fuzzy_compare,
+ )
self.phrase_matcher: PhraseMatcher = PhraseMatcher(
self.nlp.vocab,
attr=self.phrase_matcher_attr,
diff --git a/spacy/pipeline/textcat.py b/spacy/pipeline/textcat.py
index 65121114d..650a01949 100644
--- a/spacy/pipeline/textcat.py
+++ b/spacy/pipeline/textcat.py
@@ -74,7 +74,7 @@ subword_features = true
default_config={
"threshold": 0.0,
"model": DEFAULT_SINGLE_TEXTCAT_MODEL,
- "scorer": {"@scorers": "spacy.textcat_scorer.v1"},
+ "scorer": {"@scorers": "spacy.textcat_scorer.v2"},
},
default_score_weights={
"cats_score": 1.0,
@@ -117,7 +117,7 @@ def textcat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
)
-@registry.scorers("spacy.textcat_scorer.v1")
+@registry.scorers("spacy.textcat_scorer.v2")
def make_textcat_scorer():
return textcat_score
diff --git a/spacy/pipeline/textcat_multilabel.py b/spacy/pipeline/textcat_multilabel.py
index 328cee723..41c0e2f63 100644
--- a/spacy/pipeline/textcat_multilabel.py
+++ b/spacy/pipeline/textcat_multilabel.py
@@ -74,7 +74,7 @@ subword_features = true
default_config={
"threshold": 0.5,
"model": DEFAULT_MULTI_TEXTCAT_MODEL,
- "scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v1"},
+ "scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v2"},
},
default_score_weights={
"cats_score": 1.0,
@@ -120,7 +120,7 @@ def textcat_multilabel_score(examples: Iterable[Example], **kwargs) -> Dict[str,
)
-@registry.scorers("spacy.textcat_multilabel_scorer.v1")
+@registry.scorers("spacy.textcat_multilabel_scorer.v2")
def make_textcat_multilabel_scorer():
return textcat_multilabel_score
diff --git a/spacy/schemas.py b/spacy/schemas.py
index e48fe1702..3675c12dd 100644
--- a/spacy/schemas.py
+++ b/spacy/schemas.py
@@ -156,12 +156,22 @@ def validate_token_pattern(obj: list) -> List[str]:
class TokenPatternString(BaseModel):
- REGEX: Optional[StrictStr] = Field(None, alias="regex")
+ REGEX: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="regex")
IN: Optional[List[StrictStr]] = Field(None, alias="in")
NOT_IN: Optional[List[StrictStr]] = Field(None, alias="not_in")
IS_SUBSET: Optional[List[StrictStr]] = Field(None, alias="is_subset")
IS_SUPERSET: Optional[List[StrictStr]] = Field(None, alias="is_superset")
INTERSECTS: Optional[List[StrictStr]] = Field(None, alias="intersects")
+ FUZZY: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy")
+ FUZZY1: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy1")
+ FUZZY2: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy2")
+ FUZZY3: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy3")
+ FUZZY4: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy4")
+ FUZZY5: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy5")
+ FUZZY6: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy6")
+ FUZZY7: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy7")
+ FUZZY8: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy8")
+ FUZZY9: Optional[Union[StrictStr, "TokenPatternString"]] = Field(None, alias="fuzzy9")
class Config:
extra = "forbid"
diff --git a/spacy/scorer.py b/spacy/scorer.py
index 16fc303a0..d8c383ab8 100644
--- a/spacy/scorer.py
+++ b/spacy/scorer.py
@@ -476,14 +476,12 @@ class Scorer:
f_per_type = {label: PRFScore() for label in labels}
auc_per_type = {label: ROCAUCScore() for label in labels}
labels = set(labels)
- if labels:
- for eg in examples:
- labels.update(eg.predicted.cats.keys())
- labels.update(eg.reference.cats.keys())
for example in examples:
# Through this loop, None in the gold_cats indicates missing label.
pred_cats = getter(example.predicted, attr)
+ pred_cats = {k: v for k, v in pred_cats.items() if k in labels}
gold_cats = getter(example.reference, attr)
+ gold_cats = {k: v for k, v in gold_cats.items() if k in labels}
for label in labels:
pred_score = pred_cats.get(label, 0.0)
diff --git a/spacy/tests/doc/test_array.py b/spacy/tests/doc/test_array.py
index c334cc6eb..1f2d7d999 100644
--- a/spacy/tests/doc/test_array.py
+++ b/spacy/tests/doc/test_array.py
@@ -123,14 +123,14 @@ def test_doc_from_array_heads_in_bounds(en_vocab):
# head before start
arr = doc.to_array(["HEAD"])
- arr[0] = -1
+ arr[0] = numpy.int32(-1).astype(numpy.uint64)
doc_from_array = Doc(en_vocab, words=words)
with pytest.raises(ValueError):
doc_from_array.from_array(["HEAD"], arr)
# head after end
arr = doc.to_array(["HEAD"])
- arr[0] = 5
+ arr[0] = numpy.int32(5).astype(numpy.uint64)
doc_from_array = Doc(en_vocab, words=words)
with pytest.raises(ValueError):
doc_from_array.from_array(["HEAD"], arr)
diff --git a/spacy/tests/doc/test_span_group.py b/spacy/tests/doc/test_span_group.py
index 8c70a83e1..818569c64 100644
--- a/spacy/tests/doc/test_span_group.py
+++ b/spacy/tests/doc/test_span_group.py
@@ -1,7 +1,10 @@
+from typing import List
+
import pytest
from random import Random
from spacy.matcher import Matcher
-from spacy.tokens import Span, SpanGroup
+from spacy.tokens import Span, SpanGroup, Doc
+from spacy.util import filter_spans
@pytest.fixture
@@ -240,3 +243,13 @@ def test_span_group_extend(doc):
def test_span_group_dealloc(span_group):
with pytest.raises(AttributeError):
print(span_group.doc)
+
+
+@pytest.mark.issue(11975)
+def test_span_group_typing(doc: Doc):
+ """Tests whether typing of `SpanGroup` as `Iterable[Span]`-like object is accepted by mypy."""
+ span_group: SpanGroup = doc.spans["SPANS"]
+ spans: List[Span] = list(span_group)
+ for i, span in enumerate(span_group):
+ assert span == span_group[i] == spans[i]
+ filter_spans(span_group)
diff --git a/spacy/tests/matcher/test_levenshtein.py b/spacy/tests/matcher/test_levenshtein.py
index d30e36132..5afb7e1fc 100644
--- a/spacy/tests/matcher/test_levenshtein.py
+++ b/spacy/tests/matcher/test_levenshtein.py
@@ -1,5 +1,6 @@
import pytest
from spacy.matcher import levenshtein
+from spacy.matcher.levenshtein import levenshtein_compare
# empty string plus 10 random ASCII, 10 random unicode, and 2 random long tests
@@ -42,3 +43,31 @@ from spacy.matcher import levenshtein
)
def test_levenshtein(dist, a, b):
assert levenshtein(a, b) == dist
+
+
+@pytest.mark.parametrize(
+ "a,b,fuzzy,expected",
+ [
+ ("a", "a", 1, True),
+ ("a", "a", 0, True),
+ ("a", "a", -1, True),
+ ("a", "ab", 1, True),
+ ("a", "ab", 0, False),
+ ("a", "ab", -1, True),
+ ("ab", "ac", 1, True),
+ ("ab", "ac", -1, True),
+ ("abc", "cde", 4, True),
+ ("abc", "cde", -1, False),
+ ("abcdef", "cdefgh", 4, True),
+ ("abcdef", "cdefgh", 3, False),
+ ("abcdef", "cdefgh", -1, False), # default (2 for length 6)
+ ("abcdefgh", "cdefghijk", 5, True),
+ ("abcdefgh", "cdefghijk", 4, False),
+ ("abcdefgh", "cdefghijk", -1, False), # default (2)
+ ("abcdefgh", "cdefghijkl", 6, True),
+ ("abcdefgh", "cdefghijkl", 5, False),
+ ("abcdefgh", "cdefghijkl", -1, False), # default (2)
+ ],
+)
+def test_levenshtein_compare(a, b, fuzzy, expected):
+ assert levenshtein_compare(a, b, fuzzy) == expected
diff --git a/spacy/tests/matcher/test_matcher_api.py b/spacy/tests/matcher/test_matcher_api.py
index ac905eeb4..09ab6c7dc 100644
--- a/spacy/tests/matcher/test_matcher_api.py
+++ b/spacy/tests/matcher/test_matcher_api.py
@@ -118,6 +118,155 @@ def test_matcher_match_multi(matcher):
]
+@pytest.mark.parametrize(
+ "rules,match_locs",
+ [
+ (
+ {
+ "GoogleNow": [[{"ORTH": {"FUZZY": "Google"}}, {"ORTH": "Now"}]],
+ },
+ [(2, 4)],
+ ),
+ (
+ {
+ "Java": [[{"LOWER": {"FUZZY": "java"}}]],
+ },
+ [(5, 6)],
+ ),
+ (
+ {
+ "JS": [[{"ORTH": {"FUZZY": "JavaScript"}}]],
+ "GoogleNow": [[{"ORTH": {"FUZZY": "Google"}}, {"ORTH": "Now"}]],
+ "Java": [[{"LOWER": {"FUZZY": "java"}}]],
+ },
+ [(2, 4), (5, 6), (8, 9)],
+ ),
+ # only the second pattern matches (check that predicate keys used for
+ # caching don't collide)
+ (
+ {
+ "A": [[{"ORTH": {"FUZZY": "Javascripts"}}]],
+ "B": [[{"ORTH": {"FUZZY5": "Javascripts"}}]],
+ },
+ [(8, 9)],
+ ),
+ ],
+)
+def test_matcher_match_fuzzy(en_vocab, rules, match_locs):
+ words = ["They", "like", "Goggle", "Now", "and", "Jav", "but", "not", "JvvaScrpt"]
+ doc = Doc(en_vocab, words=words)
+
+ matcher = Matcher(en_vocab)
+ for key, patterns in rules.items():
+ matcher.add(key, patterns)
+ assert match_locs == [(start, end) for m_id, start, end in matcher(doc)]
+
+
+@pytest.mark.parametrize("set_op", ["IN", "NOT_IN"])
+def test_matcher_match_fuzzy_set_op_longest(en_vocab, set_op):
+ rules = {
+ "GoogleNow": [[{"ORTH": {"FUZZY": {set_op: ["Google", "Now"]}}, "OP": "+"}]]
+ }
+ matcher = Matcher(en_vocab)
+ for key, patterns in rules.items():
+ matcher.add(key, patterns, greedy="LONGEST")
+
+ words = ["They", "like", "Goggle", "Noo"]
+ doc = Doc(en_vocab, words=words)
+ assert len(matcher(doc)) == 1
+
+
+def test_matcher_match_fuzzy_set_multiple(en_vocab):
+ rules = {
+ "GoogleNow": [
+ [
+ {
+ "ORTH": {"FUZZY": {"IN": ["Google", "Now"]}, "NOT_IN": ["Goggle"]},
+ "OP": "+",
+ }
+ ]
+ ]
+ }
+ matcher = Matcher(en_vocab)
+ for key, patterns in rules.items():
+ matcher.add(key, patterns, greedy="LONGEST")
+
+ words = ["They", "like", "Goggle", "Noo"]
+ doc = Doc(matcher.vocab, words=words)
+ assert matcher(doc) == [
+ (doc.vocab.strings["GoogleNow"], 3, 4),
+ ]
+
+
+@pytest.mark.parametrize("fuzzyn", range(1, 10))
+def test_matcher_match_fuzzyn_all_insertions(en_vocab, fuzzyn):
+ matcher = Matcher(en_vocab)
+ matcher.add("GoogleNow", [[{"ORTH": {f"FUZZY{fuzzyn}": "GoogleNow"}}]])
+ # words with increasing edit distance
+ words = ["GoogleNow" + "a" * i for i in range(0, 10)]
+ doc = Doc(en_vocab, words)
+ assert len(matcher(doc)) == fuzzyn + 1
+
+
+@pytest.mark.parametrize("fuzzyn", range(1, 6))
+def test_matcher_match_fuzzyn_various_edits(en_vocab, fuzzyn):
+ matcher = Matcher(en_vocab)
+ matcher.add("GoogleNow", [[{"ORTH": {f"FUZZY{fuzzyn}": "GoogleNow"}}]])
+ # words with increasing edit distance of different edit types
+ words = [
+ "GoogleNow",
+ "GoogleNuw",
+ "GoogleNuew",
+ "GoogleNoweee",
+ "GiggleNuw3",
+ "gouggle5New",
+ ]
+ doc = Doc(en_vocab, words)
+ assert len(matcher(doc)) == fuzzyn + 1
+
+
+@pytest.mark.parametrize("greedy", ["FIRST", "LONGEST"])
+@pytest.mark.parametrize("set_op", ["IN", "NOT_IN"])
+def test_matcher_match_fuzzyn_set_op_longest(en_vocab, greedy, set_op):
+ rules = {
+ "GoogleNow": [[{"ORTH": {"FUZZY2": {set_op: ["Google", "Now"]}}, "OP": "+"}]]
+ }
+ matcher = Matcher(en_vocab)
+ for key, patterns in rules.items():
+ matcher.add(key, patterns, greedy=greedy)
+
+ words = ["They", "like", "Goggle", "Noo"]
+ doc = Doc(matcher.vocab, words=words)
+ spans = matcher(doc, as_spans=True)
+ assert len(spans) == 1
+ if set_op == "IN":
+ assert spans[0].text == "Goggle Noo"
+ else:
+ assert spans[0].text == "They like"
+
+
+def test_matcher_match_fuzzyn_set_multiple(en_vocab):
+ rules = {
+ "GoogleNow": [
+ [
+ {
+ "ORTH": {"FUZZY1": {"IN": ["Google", "Now"]}, "NOT_IN": ["Goggle"]},
+ "OP": "+",
+ }
+ ]
+ ]
+ }
+ matcher = Matcher(en_vocab)
+ for key, patterns in rules.items():
+ matcher.add(key, patterns, greedy="LONGEST")
+
+ words = ["They", "like", "Goggle", "Noo"]
+ doc = Doc(matcher.vocab, words=words)
+ assert matcher(doc) == [
+ (doc.vocab.strings["GoogleNow"], 3, 4),
+ ]
+
+
def test_matcher_empty_dict(en_vocab):
"""Test matcher allows empty token specs, meaning match on any token."""
matcher = Matcher(en_vocab)
@@ -437,6 +586,30 @@ def test_matcher_regex(en_vocab):
assert len(matches) == 0
+def test_matcher_regex_set_in(en_vocab):
+ matcher = Matcher(en_vocab)
+ pattern = [{"ORTH": {"REGEX": {"IN": [r"(?:a)", r"(?:an)"]}}}]
+ matcher.add("A_OR_AN", [pattern])
+ doc = Doc(en_vocab, words=["an", "a", "hi"])
+ matches = matcher(doc)
+ assert len(matches) == 2
+ doc = Doc(en_vocab, words=["bye"])
+ matches = matcher(doc)
+ assert len(matches) == 0
+
+
+def test_matcher_regex_set_not_in(en_vocab):
+ matcher = Matcher(en_vocab)
+ pattern = [{"ORTH": {"REGEX": {"NOT_IN": [r"(?:a)", r"(?:an)"]}}}]
+ matcher.add("A_OR_AN", [pattern])
+ doc = Doc(en_vocab, words=["an", "a", "hi"])
+ matches = matcher(doc)
+ assert len(matches) == 1
+ doc = Doc(en_vocab, words=["bye"])
+ matches = matcher(doc)
+ assert len(matches) == 1
+
+
def test_matcher_regex_shape(en_vocab):
matcher = Matcher(en_vocab)
pattern = [{"SHAPE": {"REGEX": r"^[^x]+$"}}]
diff --git a/spacy/tests/pipeline/test_entity_ruler.py b/spacy/tests/pipeline/test_entity_ruler.py
index 6851e2a7c..417f930cb 100644
--- a/spacy/tests/pipeline/test_entity_ruler.py
+++ b/spacy/tests/pipeline/test_entity_ruler.py
@@ -382,6 +382,43 @@ def test_entity_ruler_overlapping_spans(nlp, entity_ruler_factory):
assert doc.ents[0].label_ == "FOOBAR"
+@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
+def test_entity_ruler_fuzzy_pipe(nlp, entity_ruler_factory):
+ ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
+ patterns = [{"label": "HELLO", "pattern": [{"LOWER": {"FUZZY": "hello"}}]}]
+ ruler.add_patterns(patterns)
+ doc = nlp("helloo")
+ assert len(doc.ents) == 1
+ assert doc.ents[0].label_ == "HELLO"
+
+
+@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
+def test_entity_ruler_fuzzy(nlp, entity_ruler_factory):
+ ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
+ patterns = [{"label": "HELLO", "pattern": [{"LOWER": {"FUZZY": "hello"}}]}]
+ ruler.add_patterns(patterns)
+ doc = nlp("helloo")
+ assert len(doc.ents) == 1
+ assert doc.ents[0].label_ == "HELLO"
+
+
+@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
+def test_entity_ruler_fuzzy_disabled(nlp, entity_ruler_factory):
+ @registry.misc("test_fuzzy_compare_disabled")
+ def make_test_fuzzy_compare_disabled():
+ return lambda x, y, z: False
+
+ ruler = nlp.add_pipe(
+ entity_ruler_factory,
+ name="entity_ruler",
+ config={"matcher_fuzzy_compare": {"@misc": "test_fuzzy_compare_disabled"}},
+ )
+ patterns = [{"label": "HELLO", "pattern": [{"LOWER": {"FUZZY": "hello"}}]}]
+ ruler.add_patterns(patterns)
+ doc = nlp("helloo")
+ assert len(doc.ents) == 0
+
+
@pytest.mark.parametrize("n_process", [1, 2])
@pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_multiprocessing(nlp, n_process, entity_ruler_factory):
diff --git a/spacy/tests/pipeline/test_textcat.py b/spacy/tests/pipeline/test_textcat.py
index 155ce99a2..d042f3445 100644
--- a/spacy/tests/pipeline/test_textcat.py
+++ b/spacy/tests/pipeline/test_textcat.py
@@ -895,3 +895,26 @@ def test_textcat_multi_threshold():
scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0})
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
+
+
+@pytest.mark.parametrize(
+ "component_name,scorer",
+ [
+ ("textcat", "spacy.textcat_scorer.v1"),
+ ("textcat_multilabel", "spacy.textcat_multilabel_scorer.v1"),
+ ],
+)
+def test_textcat_legacy_scorers(component_name, scorer):
+ """Check that legacy scorers are registered and produce the expected score
+ keys."""
+ nlp = English()
+ nlp.add_pipe(component_name, config={"scorer": {"@scorers": scorer}})
+
+ train_examples = []
+ for text, annotations in TRAIN_DATA_SINGLE_LABEL:
+ train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
+ nlp.initialize(get_examples=lambda: train_examples)
+
+ # score the model (it's not actually trained but that doesn't matter)
+ scores = nlp.evaluate(train_examples)
+ assert 0 <= scores["cats_score"] <= 1
diff --git a/spacy/tests/test_cli.py b/spacy/tests/test_cli.py
index 3104b49ff..c88e20de2 100644
--- a/spacy/tests/test_cli.py
+++ b/spacy/tests/test_cli.py
@@ -4,7 +4,9 @@ from collections import Counter
from typing import Tuple, List, Dict, Any
import pkg_resources
import time
+from pathlib import Path
+import spacy
import numpy
import pytest
import srsly
@@ -14,7 +16,7 @@ from thinc.api import Config, ConfigValidationError
from spacy import about
from spacy.cli import info
-from spacy.cli._util import is_subpath_of, load_project_config
+from spacy.cli._util import is_subpath_of, load_project_config, walk_directory
from spacy.cli._util import parse_config_overrides, string_to_list
from spacy.cli._util import substitute_project_variables
from spacy.cli._util import validate_project_commands
@@ -32,6 +34,7 @@ from spacy.cli.package import _is_permitted_package_name
from spacy.cli.project.remote_storage import RemoteStorage
from spacy.cli.project.run import _check_requirements
from spacy.cli.validate import get_model_pkgs
+from spacy.cli.apply import apply
from spacy.cli.find_threshold import find_threshold
from spacy.lang.en import English
from spacy.lang.nl import Dutch
@@ -140,7 +143,7 @@ def test_issue11235():
assert os.path.exists(d / "cfg")
assert os.path.exists(d / f"{lang_var}_model")
assert cfg["commands"][0]["script"][0] == f"hello {lang_var}"
-
+
def test_cli_info():
nlp = Dutch()
@@ -885,6 +888,82 @@ def test_span_length_freq_dist_output_must_be_correct():
assert list(span_freqs.keys()) == [3, 1, 4, 5, 2]
+def test_applycli_empty_dir():
+ with make_tempdir() as data_path:
+ output = data_path / "test.spacy"
+ apply(data_path, output, "blank:en", "text", 1, 1)
+
+
+def test_applycli_docbin():
+ with make_tempdir() as data_path:
+ output = data_path / "testout.spacy"
+ nlp = spacy.blank("en")
+ doc = nlp("testing apply cli.")
+ # test empty DocBin case
+ docbin = DocBin()
+ docbin.to_disk(data_path / "testin.spacy")
+ apply(data_path, output, "blank:en", "text", 1, 1)
+ docbin.add(doc)
+ docbin.to_disk(data_path / "testin.spacy")
+ apply(data_path, output, "blank:en", "text", 1, 1)
+
+
+def test_applycli_jsonl():
+ with make_tempdir() as data_path:
+ output = data_path / "testout.spacy"
+ data = [{"field": "Testing apply cli.", "key": 234}]
+ data2 = [{"field": "234"}]
+ srsly.write_jsonl(data_path / "test.jsonl", data)
+ apply(data_path, output, "blank:en", "field", 1, 1)
+ srsly.write_jsonl(data_path / "test2.jsonl", data2)
+ apply(data_path, output, "blank:en", "field", 1, 1)
+
+
+def test_applycli_txt():
+ with make_tempdir() as data_path:
+ output = data_path / "testout.spacy"
+ with open(data_path / "test.foo", "w") as ftest:
+ ftest.write("Testing apply cli.")
+ apply(data_path, output, "blank:en", "text", 1, 1)
+
+
+def test_applycli_mixed():
+ with make_tempdir() as data_path:
+ output = data_path / "testout.spacy"
+ text = "Testing apply cli"
+ nlp = spacy.blank("en")
+ doc = nlp(text)
+ jsonl_data = [{"text": text}]
+ srsly.write_jsonl(data_path / "test.jsonl", jsonl_data)
+ docbin = DocBin()
+ docbin.add(doc)
+ docbin.to_disk(data_path / "testin.spacy")
+ with open(data_path / "test.txt", "w") as ftest:
+ ftest.write(text)
+ apply(data_path, output, "blank:en", "text", 1, 1)
+ # Check whether it worked
+ result = list(DocBin().from_disk(output).get_docs(nlp.vocab))
+ assert len(result) == 3
+ for doc in result:
+ assert doc.text == text
+
+
+def test_applycli_user_data():
+ Doc.set_extension("ext", default=0)
+ val = ("ext", 0)
+ with make_tempdir() as data_path:
+ output = data_path / "testout.spacy"
+ nlp = spacy.blank("en")
+ doc = nlp("testing apply cli.")
+ doc._.ext = val
+ docbin = DocBin(store_user_data=True)
+ docbin.add(doc)
+ docbin.to_disk(data_path / "testin.spacy")
+ apply(data_path, output, "blank:en", "", 1, 1)
+ result = list(DocBin().from_disk(output).get_docs(nlp.vocab))
+ assert result[0]._.ext == val
+
+
def test_local_remote_storage():
with make_tempdir() as d:
filename = "a.txt"
@@ -1107,3 +1186,26 @@ def test_upload_download_local_file():
download_file(remote_file, local_file)
with local_file.open(mode="r") as file_:
assert file_.read() == content
+
+
+def test_walk_directory():
+ with make_tempdir() as d:
+ files = [
+ "data1.iob",
+ "data2.iob",
+ "data3.json",
+ "data4.conll",
+ "data5.conll",
+ "data6.conll",
+ "data7.txt",
+ ]
+
+ for f in files:
+ Path(d / f).touch()
+
+ assert (len(walk_directory(d))) == 7
+ assert (len(walk_directory(d, suffix=None))) == 7
+ assert (len(walk_directory(d, suffix="json"))) == 1
+ assert (len(walk_directory(d, suffix="iob"))) == 2
+ assert (len(walk_directory(d, suffix="conll"))) == 3
+ assert (len(walk_directory(d, suffix="pdf"))) == 0
diff --git a/spacy/tests/test_cli_app.py b/spacy/tests/test_cli_app.py
new file mode 100644
index 000000000..873a3ff66
--- /dev/null
+++ b/spacy/tests/test_cli_app.py
@@ -0,0 +1,33 @@
+import os
+from pathlib import Path
+from typer.testing import CliRunner
+
+from spacy.cli._util import app
+from .util import make_tempdir
+
+
+def test_convert_auto():
+ with make_tempdir() as d_in, make_tempdir() as d_out:
+ for f in ["data1.iob", "data2.iob", "data3.iob"]:
+ Path(d_in / f).touch()
+
+ # ensure that "automatic" suffix detection works
+ result = CliRunner().invoke(app, ["convert", str(d_in), str(d_out)])
+ assert "Generated output file" in result.stdout
+ out_files = os.listdir(d_out)
+ assert len(out_files) == 3
+ assert "data1.spacy" in out_files
+ assert "data2.spacy" in out_files
+ assert "data3.spacy" in out_files
+
+
+def test_convert_auto_conflict():
+ with make_tempdir() as d_in, make_tempdir() as d_out:
+ for f in ["data1.iob", "data2.iob", "data3.json"]:
+ Path(d_in / f).touch()
+
+ # ensure that "automatic" suffix detection warns when there are different file types
+ result = CliRunner().invoke(app, ["convert", str(d_in), str(d_out)])
+ assert "All input files must be same type" in result.stdout
+ out_files = os.listdir(d_out)
+ assert len(out_files) == 0
diff --git a/spacy/tests/test_language.py b/spacy/tests/test_language.py
index 03a98d32f..03790eb86 100644
--- a/spacy/tests/test_language.py
+++ b/spacy/tests/test_language.py
@@ -3,6 +3,7 @@ import logging
from unittest import mock
import pytest
from spacy.language import Language
+from spacy.scorer import Scorer
from spacy.tokens import Doc, Span
from spacy.vocab import Vocab
from spacy.training import Example
@@ -126,6 +127,112 @@ def test_evaluate_no_pipe(nlp):
nlp.evaluate([Example.from_dict(doc, annots)])
+def test_evaluate_textcat_multilabel(en_vocab):
+ """Test that evaluate works with a multilabel textcat pipe."""
+ nlp = Language(en_vocab)
+ textcat_multilabel = nlp.add_pipe("textcat_multilabel")
+ for label in ("FEATURE", "REQUEST", "BUG", "QUESTION"):
+ textcat_multilabel.add_label(label)
+ nlp.initialize()
+
+ annots = {"cats": {"FEATURE": 1.0, "QUESTION": 1.0}}
+ doc = nlp.make_doc("hello world")
+ example = Example.from_dict(doc, annots)
+ scores = nlp.evaluate([example])
+ labels = nlp.get_pipe("textcat_multilabel").labels
+ for label in labels:
+ assert scores["cats_f_per_type"].get(label) is not None
+ for key in example.reference.cats.keys():
+ if key not in labels:
+ assert scores["cats_f_per_type"].get(key) is None
+
+
+def test_evaluate_multiple_textcat_final(en_vocab):
+ """Test that evaluate evaluates the final textcat component in a pipeline
+ with more than one textcat or textcat_multilabel."""
+ nlp = Language(en_vocab)
+ textcat = nlp.add_pipe("textcat")
+ for label in ("POSITIVE", "NEGATIVE"):
+ textcat.add_label(label)
+ textcat_multilabel = nlp.add_pipe("textcat_multilabel")
+ for label in ("FEATURE", "REQUEST", "BUG", "QUESTION"):
+ textcat_multilabel.add_label(label)
+ nlp.initialize()
+
+ annots = {
+ "cats": {
+ "POSITIVE": 1.0,
+ "NEGATIVE": 0.0,
+ "FEATURE": 1.0,
+ "QUESTION": 1.0,
+ "POSITIVE": 1.0,
+ "NEGATIVE": 0.0,
+ }
+ }
+ doc = nlp.make_doc("hello world")
+ example = Example.from_dict(doc, annots)
+ scores = nlp.evaluate([example])
+ # get the labels from the final pipe
+ labels = nlp.get_pipe(nlp.pipe_names[-1]).labels
+ for label in labels:
+ assert scores["cats_f_per_type"].get(label) is not None
+ for key in example.reference.cats.keys():
+ if key not in labels:
+ assert scores["cats_f_per_type"].get(key) is None
+
+
+def test_evaluate_multiple_textcat_separate(en_vocab):
+ """Test that evaluate can evaluate multiple textcat components separately
+ with custom scorers."""
+
+ def custom_textcat_score(examples, **kwargs):
+ scores = Scorer.score_cats(
+ examples,
+ "cats",
+ multi_label=False,
+ **kwargs,
+ )
+ return {f"custom_{k}": v for k, v in scores.items()}
+
+ @spacy.registry.scorers("test_custom_textcat_scorer")
+ def make_custom_textcat_scorer():
+ return custom_textcat_score
+
+ nlp = Language(en_vocab)
+ textcat = nlp.add_pipe(
+ "textcat",
+ config={"scorer": {"@scorers": "test_custom_textcat_scorer"}},
+ )
+ for label in ("POSITIVE", "NEGATIVE"):
+ textcat.add_label(label)
+ textcat_multilabel = nlp.add_pipe("textcat_multilabel")
+ for label in ("FEATURE", "REQUEST", "BUG", "QUESTION"):
+ textcat_multilabel.add_label(label)
+ nlp.initialize()
+
+ annots = {
+ "cats": {
+ "POSITIVE": 1.0,
+ "NEGATIVE": 0.0,
+ "FEATURE": 1.0,
+ "QUESTION": 1.0,
+ "POSITIVE": 1.0,
+ "NEGATIVE": 0.0,
+ }
+ }
+ doc = nlp.make_doc("hello world")
+ example = Example.from_dict(doc, annots)
+ scores = nlp.evaluate([example])
+ # check custom scores for the textcat pipe
+ assert "custom_cats_f_per_type" in scores
+ labels = nlp.get_pipe("textcat").labels
+ assert set(scores["custom_cats_f_per_type"].keys()) == set(labels)
+ # check default scores for the textcat_multilabel pipe
+ assert "cats_f_per_type" in scores
+ labels = nlp.get_pipe("textcat_multilabel").labels
+ assert set(scores["cats_f_per_type"].keys()) == set(labels)
+
+
def vector_modification_pipe(doc):
doc.vector += 1
return doc
diff --git a/spacy/tests/test_misc.py b/spacy/tests/test_misc.py
index 1c9b045ac..618f17334 100644
--- a/spacy/tests/test_misc.py
+++ b/spacy/tests/test_misc.py
@@ -8,7 +8,7 @@ from spacy import prefer_gpu, require_gpu, require_cpu
from spacy.ml._precomputable_affine import PrecomputableAffine
from spacy.ml._precomputable_affine import _backprop_precomputable_affine_padding
from spacy.util import dot_to_object, SimpleFrozenList, import_file
-from spacy.util import to_ternary_int
+from spacy.util import to_ternary_int, find_available_port
from thinc.api import Config, Optimizer, ConfigValidationError
from thinc.api import get_current_ops, set_current_ops, NumpyOps, CupyOps, MPSOps
from thinc.compat import has_cupy_gpu, has_torch_mps_gpu
@@ -434,3 +434,16 @@ def test_to_ternary_int():
assert to_ternary_int(-10) == -1
assert to_ternary_int("string") == -1
assert to_ternary_int([0, "string"]) == -1
+
+
+def test_find_available_port():
+ host = "0.0.0.0"
+ port = 5000
+ assert find_available_port(port, host) == port, "Port 5000 isn't free"
+
+ from wsgiref.simple_server import make_server, demo_app
+
+ with make_server(host, port, demo_app) as httpd:
+ with pytest.warns(UserWarning, match="already in use"):
+ found_port = find_available_port(port, host, auto_select=True)
+ assert found_port == port + 1, "Didn't find next port"
diff --git a/spacy/tokens/doc.pyx b/spacy/tokens/doc.pyx
index f2621292c..075bc4d15 100644
--- a/spacy/tokens/doc.pyx
+++ b/spacy/tokens/doc.pyx
@@ -359,6 +359,7 @@ cdef class Doc:
for annot in annotations:
if annot:
if annot is heads or annot is sent_starts or annot is ent_iobs:
+ annot = numpy.array(annot, dtype=numpy.int32).astype(numpy.uint64)
for i in range(len(words)):
if attrs.ndim == 1:
attrs[i] = annot[i]
@@ -1558,6 +1559,7 @@ cdef class Doc:
for j, (attr, annot) in enumerate(token_annotations.items()):
if attr is HEAD:
+ annot = numpy.array(annot, dtype=numpy.int32).astype(numpy.uint64)
for i in range(len(words)):
array[i, j] = annot[i]
elif attr is MORPH:
diff --git a/spacy/tokens/span.pyi b/spacy/tokens/span.pyi
index 0a6f306a6..9986a90e6 100644
--- a/spacy/tokens/span.pyi
+++ b/spacy/tokens/span.pyi
@@ -95,8 +95,8 @@ class Span:
self,
start_idx: int,
end_idx: int,
- label: int = ...,
- kb_id: int = ...,
+ label: Union[int, str] = ...,
+ kb_id: Union[int, str] = ...,
vector: Optional[Floats1d] = ...,
) -> Span: ...
@property
diff --git a/spacy/tokens/span.pyx b/spacy/tokens/span.pyx
index c3495f497..99a5f43bd 100644
--- a/spacy/tokens/span.pyx
+++ b/spacy/tokens/span.pyx
@@ -299,7 +299,7 @@ cdef class Span:
for ancestor in ancestors:
ancestor_i = ancestor.i - self.c.start
if ancestor_i in range(length):
- array[i, head_col] = ancestor_i - i
+ array[i, head_col] = numpy.int32(ancestor_i - i).astype(numpy.uint64)
# if there is no appropriate ancestor, define a new artificial root
value = array[i, head_col]
@@ -307,7 +307,7 @@ cdef class Span:
new_root = old_to_new_root.get(ancestor_i, None)
if new_root is not None:
# take the same artificial root as a previous token from the same sentence
- array[i, head_col] = new_root - i
+ array[i, head_col] = numpy.int32(new_root - i).astype(numpy.uint64)
else:
# set this token as the new artificial root
array[i, head_col] = 0
diff --git a/spacy/tokens/span_group.pyi b/spacy/tokens/span_group.pyi
index 21cd124ab..0b4aa83aa 100644
--- a/spacy/tokens/span_group.pyi
+++ b/spacy/tokens/span_group.pyi
@@ -18,6 +18,7 @@ class SpanGroup:
def doc(self) -> Doc: ...
@property
def has_overlap(self) -> bool: ...
+ def __iter__(self): ...
def __len__(self) -> int: ...
def append(self, span: Span) -> None: ...
def extend(self, spans: Iterable[Span]) -> None: ...
diff --git a/spacy/tokens/span_group.pyx b/spacy/tokens/span_group.pyx
index 1aa3c0bc8..608dda283 100644
--- a/spacy/tokens/span_group.pyx
+++ b/spacy/tokens/span_group.pyx
@@ -158,6 +158,16 @@ cdef class SpanGroup:
return self._concat(other)
return NotImplemented
+ def __iter__(self):
+ """
+ Iterate over the spans in this SpanGroup.
+ YIELDS (Span): A span in this SpanGroup.
+
+ DOCS: https://spacy.io/api/spangroup#iter
+ """
+ for i in range(self.c.size()):
+ yield self[i]
+
def append(self, Span span):
"""Add a span to the group. The span must refer to the same Doc
object as the span group.
diff --git a/spacy/training/example.pyx b/spacy/training/example.pyx
index dfd337b9e..95b0f0de9 100644
--- a/spacy/training/example.pyx
+++ b/spacy/training/example.pyx
@@ -443,26 +443,27 @@ def _annot2array(vocab, tok_annot, doc_annot):
if key not in IDS:
raise ValueError(Errors.E974.format(obj="token", key=key))
elif key in ["ORTH", "SPACY"]:
- pass
+ continue
elif key == "HEAD":
attrs.append(key)
- values.append([h-i if h is not None else 0 for i, h in enumerate(value)])
+ row = [h-i if h is not None else 0 for i, h in enumerate(value)]
elif key == "DEP":
attrs.append(key)
- values.append([vocab.strings.add(h) if h is not None else MISSING_DEP for h in value])
+ row = [vocab.strings.add(h) if h is not None else MISSING_DEP for h in value]
elif key == "SENT_START":
attrs.append(key)
- values.append([to_ternary_int(v) for v in value])
+ row = [to_ternary_int(v) for v in value]
elif key == "MORPH":
attrs.append(key)
- values.append([vocab.morphology.add(v) for v in value])
+ row = [vocab.morphology.add(v) for v in value]
else:
attrs.append(key)
if not all(isinstance(v, str) for v in value):
types = set([type(v) for v in value])
raise TypeError(Errors.E969.format(field=key, types=types)) from None
- values.append([vocab.strings.add(v) for v in value])
- array = numpy.asarray(values, dtype="uint64")
+ row = [vocab.strings.add(v) for v in value]
+ values.append([numpy.array(v, dtype=numpy.int32).astype(numpy.uint64) if v < 0 else v for v in row])
+ array = numpy.array(values, dtype=numpy.uint64)
return attrs, array.T
diff --git a/spacy/training/loggers.py b/spacy/training/loggers.py
index 408ea7140..7de31822e 100644
--- a/spacy/training/loggers.py
+++ b/spacy/training/loggers.py
@@ -26,6 +26,8 @@ def setup_table(
return final_cols, final_widths, ["r" for _ in final_widths]
+# We cannot rename this method as it's directly imported
+# and used by external packages such as spacy-loggers.
@registry.loggers("spacy.ConsoleLogger.v2")
def console_logger(
progress_bar: bool = False,
@@ -33,7 +35,27 @@ def console_logger(
output_file: Optional[Union[str, Path]] = None,
):
"""The ConsoleLogger.v2 prints out training logs in the console and/or saves them to a jsonl file.
- progress_bar (bool): Whether the logger should print the progress bar.
+ progress_bar (bool): Whether the logger should print a progress bar tracking the steps till the next evaluation pass.
+ console_output (bool): Whether the logger should print the logs on the console.
+ output_file (Optional[Union[str, Path]]): The file to save the training logs to.
+ """
+ return console_logger_v3(
+ progress_bar=None if progress_bar is False else "eval",
+ console_output=console_output,
+ output_file=output_file,
+ )
+
+
+@registry.loggers("spacy.ConsoleLogger.v3")
+def console_logger_v3(
+ progress_bar: Optional[str] = None,
+ console_output: bool = True,
+ output_file: Optional[Union[str, Path]] = None,
+):
+ """The ConsoleLogger.v3 prints out training logs in the console and/or saves them to a jsonl file.
+ progress_bar (Optional[str]): Type of progress bar to show in the console. Allowed values:
+ train - Tracks the number of steps from the beginning of training until the full training run is complete (training.max_steps is reached).
+ eval - Tracks the number of steps between the previous and next evaluation (training.eval_frequency is reached).
console_output (bool): Whether the logger should print the logs on the console.
output_file (Optional[Union[str, Path]]): The file to save the training logs to.
"""
@@ -70,6 +92,7 @@ def console_logger(
for name, proc in nlp.pipeline
if hasattr(proc, "is_trainable") and proc.is_trainable
]
+ max_steps = nlp.config["training"]["max_steps"]
eval_frequency = nlp.config["training"]["eval_frequency"]
score_weights = nlp.config["training"]["score_weights"]
score_cols = [col for col, value in score_weights.items() if value is not None]
@@ -84,6 +107,13 @@ def console_logger(
write(msg.row(table_header, widths=table_widths, spacing=spacing))
write(msg.row(["-" * width for width in table_widths], spacing=spacing))
progress = None
+ expected_progress_types = ("train", "eval")
+ if progress_bar is not None and progress_bar not in expected_progress_types:
+ raise ValueError(
+ Errors.E1048.format(
+ unexpected=progress_bar, expected=expected_progress_types
+ )
+ )
def log_step(info: Optional[Dict[str, Any]]) -> None:
nonlocal progress
@@ -141,11 +171,23 @@ def console_logger(
)
)
if progress_bar:
+ if progress_bar == "train":
+ total = max_steps
+ desc = f"Last Eval Epoch: {info['epoch']}"
+ initial = info["step"]
+ else:
+ total = eval_frequency
+ desc = f"Epoch {info['epoch']+1}"
+ initial = 0
# Set disable=None, so that it disables on non-TTY
progress = tqdm.tqdm(
- total=eval_frequency, disable=None, leave=False, file=stderr
+ total=total,
+ disable=None,
+ leave=False,
+ file=stderr,
+ initial=initial,
)
- progress.set_description(f"Epoch {info['epoch']+1}")
+ progress.set_description(desc)
def finalize() -> None:
if output_stream:
diff --git a/spacy/util.py b/spacy/util.py
index 8d211a9a5..8bf8fb1b0 100644
--- a/spacy/util.py
+++ b/spacy/util.py
@@ -31,6 +31,7 @@ import shlex
import inspect
import pkgutil
import logging
+import socket
try:
import cupy.random
@@ -1736,3 +1737,50 @@ def all_equal(iterable):
(or if the input is an empty sequence), False otherwise."""
g = itertools.groupby(iterable)
return next(g, True) and not next(g, False)
+
+
+def _is_port_in_use(port: int, host: str = "localhost") -> bool:
+ """Check if 'host:port' is in use. Return True if it is, False otherwise.
+
+ port (int): the port to check
+ host (str): the host to check (default "localhost")
+ RETURNS (bool): Whether 'host:port' is in use.
+ """
+ s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
+ try:
+ s.bind((host, port))
+ return False
+ except socket.error:
+ return True
+ finally:
+ s.close()
+
+
+def find_available_port(start: int, host: str, auto_select: bool = False) -> int:
+ """Given a starting port and a host, handle finding a port.
+
+ If `auto_select` is False, a busy port will raise an error.
+
+ If `auto_select` is True, the next free higher port will be used.
+
+ start (int): the port to start looking from
+ host (str): the host to find a port on
+ auto_select (bool): whether to automatically select a new port if the given port is busy (default False)
+ RETURNS (int): The port to use.
+ """
+ if not _is_port_in_use(start, host):
+ return start
+
+ port = start
+ if not auto_select:
+ raise ValueError(Errors.E1050.format(port=port))
+
+ while _is_port_in_use(port, host) and port < 65535:
+ port += 1
+
+ if port == 65535 and _is_port_in_use(port, host):
+ raise ValueError(Errors.E1049.format(host=host))
+
+ # if we get here, the port changed
+ warnings.warn(Warnings.W124.format(host=host, port=start, serve_port=port))
+ return port
diff --git a/website/docs/api/cli.md b/website/docs/api/cli.md
index 8823a3bd8..275e37ee0 100644
--- a/website/docs/api/cli.md
+++ b/website/docs/api/cli.md
@@ -12,6 +12,7 @@ menu:
- ['train', 'train']
- ['pretrain', 'pretrain']
- ['evaluate', 'evaluate']
+ - ['apply', 'apply']
- ['find-threshold', 'find-threshold']
- ['assemble', 'assemble']
- ['package', 'package']
@@ -474,7 +475,7 @@ report span characteristics such as the average span length and the span (or
span boundary) distinctiveness. The distinctiveness measure shows how different
the tokens are with respect to the rest of the corpus using the KL-divergence of
the token distributions. To learn more, you can check out Papay et al.'s work on
-[*Dissecting Span Identification Tasks with Performance Prediction* (EMNLP 2020)](https://aclanthology.org/2020.emnlp-main.396/).
+[_Dissecting Span Identification Tasks with Performance Prediction_ (EMNLP 2020)](https://aclanthology.org/2020.emnlp-main.396/).
@@ -1162,6 +1163,37 @@ $ python -m spacy evaluate [model] [data_path] [--output] [--code] [--gold-prepr
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | Training results and optional metrics and visualizations. |
+## apply {#apply new="3.5" tag="command"}
+
+Applies a trained pipeline to data and stores the resulting annotated documents
+in a `DocBin`. The input can be a single file or a directory. The recognized
+input formats are:
+
+1. `.spacy`
+2. `.jsonl` containing a user specified `text_key`
+3. Files with any other extension are assumed to be plain text files containing
+ a single document.
+
+When a directory is provided it is traversed recursively to collect all files.
+
+```cli
+$ python -m spacy apply [model] [data-path] [output-file] [--code] [--text-key] [--force-overwrite] [--gpu-id] [--batch-size] [--n-process]
+```
+
+| Name | Description |
+| ----------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| `model` | Pipeline to apply to the data. Can be a package or a path to a data directory. ~~str (positional)~~ |
+| `data_path` | Location of data to be evaluated in spaCy's [binary format](/api/data-formats#training), jsonl, or plain text. ~~Path (positional)~~ |
+| `output-file`, `-o` | Output `DocBin` path. ~~str (positional)~~ |
+| `--code`, `-c` 3 | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
+| `--text-key`, `-tk` | The key for `.jsonl` files to use to grab the texts from. Defaults to `text`. ~~Optional[str] \(option)~~ |
+| `--force-overwrite`, `-F` | If the provided `output-file` already exists, then force `apply` to overwrite it. If this is `False` (default) then quits with a warning instead. ~~bool (flag)~~ |
+| `--gpu-id`, `-g` | GPU to use, if any. Defaults to `-1` for CPU. ~~int (option)~~ |
+| `--batch-size`, `-b` | Batch size to use for prediction. Defaults to `1`. ~~int (option)~~ |
+| `--n-process`, `-n` | Number of processes to use for prediction. Defaults to `1`. ~~int (option)~~ |
+| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
+| **CREATES** | A `DocBin` with the annotations from the `model` for all the files found in `data-path`. |
+
## find-threshold {#find-threshold new="3.5" tag="command"}
Runs prediction trials for a trained model with varying tresholds to maximize
@@ -1187,7 +1219,6 @@ be provided.
> $ python -m spacy find-threshold my_nlp data.spacy spancat threshold spans_sc_f
> ```
-
| Name | Description |
| ----------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `model` | Pipeline to evaluate. Can be a package or a path to a data directory. ~~str (positional)~~ |
diff --git a/website/docs/api/data-formats.md b/website/docs/api/data-formats.md
index 768844cf3..420e827a0 100644
--- a/website/docs/api/data-formats.md
+++ b/website/docs/api/data-formats.md
@@ -186,7 +186,7 @@ process that are used when you run [`spacy train`](/api/cli#train).
| `accumulate_gradient` | Whether to divide the batch up into substeps. Defaults to `1`. ~~int~~ |
| `batcher` | Callable that takes an iterator of [`Doc`](/api/doc) objects and yields batches of `Doc`s. Defaults to [`batch_by_words`](/api/top-level#batch_by_words). ~~Callable[[Iterator[Doc], Iterator[List[Doc]]]]~~ |
| `before_to_disk` | Optional callback to modify `nlp` object right before it is saved to disk during and after training. Can be used to remove or reset config values or disable components. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ |
-| `before_update` | Optional callback that is invoked at the start of each training step with the `nlp` object and a `Dict` containing the following entries: `step`, `epoch`. Can be used to make deferred changes to components. Defaults to `null`. ~~Optional[Callable[[Language, Dict[str, Any]], None]]~~ |
+| `before_update` 3.5 | Optional callback that is invoked at the start of each training step with the `nlp` object and a `Dict` containing the following entries: `step`, `epoch`. Can be used to make deferred changes to components. Defaults to `null`. ~~Optional[Callable[[Language, Dict[str, Any]], None]]~~ |
| `dev_corpus` | Dot notation of the config location defining the dev corpus. Defaults to `corpora.dev`. ~~str~~ |
| `dropout` | The dropout rate. Defaults to `0.1`. ~~float~~ |
| `eval_frequency` | How often to evaluate during training (steps). Defaults to `200`. ~~int~~ |
diff --git a/website/docs/api/entityruler.md b/website/docs/api/entityruler.md
index c2ba33f01..f15c648ff 100644
--- a/website/docs/api/entityruler.md
+++ b/website/docs/api/entityruler.md
@@ -55,13 +55,14 @@ how the component should be configured. You can override its settings via the
> nlp.add_pipe("entity_ruler", config=config)
> ```
-| Setting | Description |
-| --------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| `phrase_matcher_attr` | Optional attribute name match on for the internal [`PhraseMatcher`](/api/phrasematcher), e.g. `LOWER` to match on the lowercase token text. Defaults to `None`. ~~Optional[Union[int, str]]~~ |
-| `validate` | Whether patterns should be validated (passed to the `Matcher` and `PhraseMatcher`). Defaults to `False`. ~~bool~~ |
-| `overwrite_ents` | If existing entities are present, e.g. entities added by the model, overwrite them by matches if necessary. Defaults to `False`. ~~bool~~ |
-| `ent_id_sep` | Separator used internally for entity IDs. Defaults to `"\|\|"`. ~~str~~ |
-| `scorer` | The scoring method. Defaults to [`spacy.scorer.get_ner_prf`](/api/scorer#get_ner_prf). ~~Optional[Callable]~~ |
+| Setting | Description |
+| ---------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| `phrase_matcher_attr` | Optional attribute name match on for the internal [`PhraseMatcher`](/api/phrasematcher), e.g. `LOWER` to match on the lowercase token text. Defaults to `None`. ~~Optional[Union[int, str]]~~ |
+| `matcher_fuzzy_compare` 3.5 | The fuzzy comparison method, passed on to the internal `Matcher`. Defaults to `spacy.matcher.levenshtein.levenshtein_compare`. ~~Callable~~ |
+| `validate` | Whether patterns should be validated (passed to the `Matcher` and `PhraseMatcher`). Defaults to `False`. ~~bool~~ |
+| `overwrite_ents` | If existing entities are present, e.g. entities added by the model, overwrite them by matches if necessary. Defaults to `False`. ~~bool~~ |
+| `ent_id_sep` | Separator used internally for entity IDs. Defaults to `"\|\|"`. ~~str~~ |
+| `scorer` | The scoring method. Defaults to [`spacy.scorer.get_ner_prf`](/api/scorer#get_ner_prf). ~~Optional[Callable]~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/entityruler.py
@@ -85,23 +86,25 @@ be a token pattern (list) or a phrase pattern (string). For example:
> ruler = EntityRuler(nlp, overwrite_ents=True)
> ```
-| Name | Description |
-| --------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| `nlp` | The shared nlp object to pass the vocab to the matchers and process phrase patterns. ~~Language~~ |
-| `name` 3 | Instance name of the current pipeline component. Typically passed in automatically from the factory when the component is added. Used to disable the current entity ruler while creating phrase patterns with the nlp object. ~~str~~ |
-| _keyword-only_ | |
-| `phrase_matcher_attr` | Optional attribute name match on for the internal [`PhraseMatcher`](/api/phrasematcher), e.g. `LOWER` to match on the lowercase token text. Defaults to `None`. ~~Optional[Union[int, str]]~~ |
-| `validate` | Whether patterns should be validated, passed to Matcher and PhraseMatcher as `validate`. Defaults to `False`. ~~bool~~ |
-| `overwrite_ents` | If existing entities are present, e.g. entities added by the model, overwrite them by matches if necessary. Defaults to `False`. ~~bool~~ |
-| `ent_id_sep` | Separator used internally for entity IDs. Defaults to `"\|\|"`. ~~str~~ |
-| `patterns` | Optional patterns to load in on initialization. ~~Optional[List[Dict[str, Union[str, List[dict]]]]]~~ |
+| Name | Description |
+| ---------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| `nlp` | The shared nlp object to pass the vocab to the matchers and process phrase patterns. ~~Language~~ |
+| `name` 3 | Instance name of the current pipeline component. Typically passed in automatically from the factory when the component is added. Used to disable the current entity ruler while creating phrase patterns with the nlp object. ~~str~~ |
+| _keyword-only_ | |
+| `phrase_matcher_attr` | Optional attribute name match on for the internal [`PhraseMatcher`](/api/phrasematcher), e.g. `LOWER` to match on the lowercase token text. Defaults to `None`. ~~Optional[Union[int, str]]~~ |
+| `matcher_fuzzy_compare` 3.5 | The fuzzy comparison method, passed on to the internal `Matcher`. Defaults to `spacy.matcher.levenshtein.levenshtein_compare`. ~~Callable~~ |
+| `validate` | Whether patterns should be validated, passed to Matcher and PhraseMatcher as `validate`. Defaults to `False`. ~~bool~~ |
+| `overwrite_ents` | If existing entities are present, e.g. entities added by the model, overwrite them by matches if necessary. Defaults to `False`. ~~bool~~ |
+| `ent_id_sep` | Separator used internally for entity IDs. Defaults to `"\|\|"`. ~~str~~ |
+| `patterns` | Optional patterns to load in on initialization. ~~Optional[List[Dict[str, Union[str, List[dict]]]]]~~ |
+| `scorer` | The scoring method. Defaults to [`spacy.scorer.get_ner_prf`](/api/scorer#get_ner_prf). ~~Optional[Callable]~~ |
## EntityRuler.initialize {#initialize tag="method" new="3"}
Initialize the component with data and used before training to load in rules
-from a [pattern file](/usage/rule-based-matching/#entityruler-files). This method
-is typically called by [`Language.initialize`](/api/language#initialize) and
-lets you customize arguments it receives via the
+from a [pattern file](/usage/rule-based-matching/#entityruler-files). This
+method is typically called by [`Language.initialize`](/api/language#initialize)
+and lets you customize arguments it receives via the
[`[initialize.components]`](/api/data-formats#config-initialize) block in the
config.
@@ -210,10 +213,10 @@ of dicts) or a phrase pattern (string). For more details, see the usage guide on
| ---------- | ---------------------------------------------------------------- |
| `patterns` | The patterns to add. ~~List[Dict[str, Union[str, List[dict]]]]~~ |
-
## EntityRuler.remove {#remove tag="method" new="3.2.1"}
-Remove a pattern by its ID from the entity ruler. A `ValueError` is raised if the ID does not exist.
+Remove a pattern by its ID from the entity ruler. A `ValueError` is raised if
+the ID does not exist.
> #### Example
>
@@ -224,9 +227,9 @@ Remove a pattern by its ID from the entity ruler. A `ValueError` is raised if th
> ruler.remove("apple")
> ```
-| Name | Description |
-| ---------- | ---------------------------------------------------------------- |
-| `id` | The ID of the pattern rule. ~~str~~ |
+| Name | Description |
+| ---- | ----------------------------------- |
+| `id` | The ID of the pattern rule. ~~str~~ |
## EntityRuler.to_disk {#to_disk tag="method"}
diff --git a/website/docs/api/lexeme.md b/website/docs/api/lexeme.md
index eb76afa90..557d04cce 100644
--- a/website/docs/api/lexeme.md
+++ b/website/docs/api/lexeme.md
@@ -138,7 +138,7 @@ The L2 norm of the lexeme's vector representation.
| `prefix` | Length-N substring from the start of the word. Defaults to `N=1`. ~~int~~ |
| `prefix_` | Length-N substring from the start of the word. Defaults to `N=1`. ~~str~~ |
| `suffix` | Length-N substring from the end of the word. Defaults to `N=3`. ~~int~~ |
-| `suffix_` | Length-N substring from the start of the word. Defaults to `N=3`. ~~str~~ |
+| `suffix_` | Length-N substring from the end of the word. Defaults to `N=3`. ~~str~~ |
| `is_alpha` | Does the lexeme consist of alphabetic characters? Equivalent to `lexeme.text.isalpha()`. ~~bool~~ |
| `is_ascii` | Does the lexeme consist of ASCII characters? Equivalent to `[any(ord(c) >= 128 for c in lexeme.text)]`. ~~bool~~ |
| `is_digit` | Does the lexeme consist of digits? Equivalent to `lexeme.text.isdigit()`. ~~bool~~ |
diff --git a/website/docs/api/matcher.md b/website/docs/api/matcher.md
index cd7bfa070..bd5f6ac24 100644
--- a/website/docs/api/matcher.md
+++ b/website/docs/api/matcher.md
@@ -86,14 +86,20 @@ it compares to another value.
> ]
> ```
-| Attribute | Description |
-| -------------------------- | -------------------------------------------------------------------------------------------------------- |
-| `IN` | Attribute value is member of a list. ~~Any~~ |
-| `NOT_IN` | Attribute value is _not_ member of a list. ~~Any~~ |
-| `IS_SUBSET` | Attribute value (for `MORPH` or custom list attributes) is a subset of a list. ~~Any~~ |
-| `IS_SUPERSET` | Attribute value (for `MORPH` or custom list attributes) is a superset of a list. ~~Any~~ |
-| `INTERSECTS` | Attribute value (for `MORPH` or custom list attribute) has a non-empty intersection with a list. ~~Any~~ |
-| `==`, `>=`, `<=`, `>`, `<` | Attribute value is equal, greater or equal, smaller or equal, greater or smaller. ~~Union[int, float]~~ |
+| Attribute | Description |
+| -------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| `REGEX` | Attribute value matches the regular expression at any position in the string. ~~Any~~ |
+| `FUZZY` | Attribute value matches if the `fuzzy_compare` method matches for `(value, pattern, -1)`. The default method allows a Levenshtein edit distance of at least 2 and up to 30% of the pattern string length. ~~Any~~ |
+| `FUZZY1`, `FUZZY2`, ... `FUZZY9` | Attribute value matches if the `fuzzy_compare` method matches for `(value, pattern, N)`. The default method allows a Levenshtein edit distance of at most N (1-9). ~~Any~~ |
+| `IN` | Attribute value is member of a list. ~~Any~~ |
+| `NOT_IN` | Attribute value is _not_ member of a list. ~~Any~~ |
+| `IS_SUBSET` | Attribute value (for `MORPH` or custom list attributes) is a subset of a list. ~~Any~~ |
+| `IS_SUPERSET` | Attribute value (for `MORPH` or custom list attributes) is a superset of a list. ~~Any~~ |
+| `INTERSECTS` | Attribute value (for `MORPH` or custom list attribute) has a non-empty intersection with a list. ~~Any~~ |
+| `==`, `>=`, `<=`, `>`, `<` | Attribute value is equal, greater or equal, smaller or equal, greater or smaller. ~~Union[int, float]~~ |
+
+As of spaCy v3.5, `REGEX` and `FUZZY` can be used in combination with `IN` and
+`NOT_IN`.
## Matcher.\_\_init\_\_ {#init tag="method"}
@@ -109,10 +115,11 @@ string where an integer is expected) or unexpected property names.
> matcher = Matcher(nlp.vocab)
> ```
-| Name | Description |
-| ---------- | ----------------------------------------------------------------------------------------------------- |
-| `vocab` | The vocabulary object, which must be shared with the documents the matcher will operate on. ~~Vocab~~ |
-| `validate` | Validate all patterns added to this matcher. ~~bool~~ |
+| Name | Description |
+| --------------- | ----------------------------------------------------------------------------------------------------- |
+| `vocab` | The vocabulary object, which must be shared with the documents the matcher will operate on. ~~Vocab~~ |
+| `validate` | Validate all patterns added to this matcher. ~~bool~~ |
+| `fuzzy_compare` | The comparison method used for the `FUZZY` operators. ~~Callable[[str, str, int], bool]~~ |
## Matcher.\_\_call\_\_ {#call tag="method"}
diff --git a/website/docs/api/spangroup.md b/website/docs/api/spangroup.md
index 2d1cf73c4..bd9659acb 100644
--- a/website/docs/api/spangroup.md
+++ b/website/docs/api/spangroup.md
@@ -202,6 +202,23 @@ already present in the current span group.
| `other` | The span group or spans to append. ~~Union[SpanGroup, Iterable[Span]]~~ |
| **RETURNS** | The span group. ~~SpanGroup~~ |
+## SpanGroup.\_\_iter\_\_ {#iter tag="method" new="3.5"}
+
+Iterate over the spans in this span group.
+
+> #### Example
+>
+> ```python
+> doc = nlp("Their goi ng home")
+> doc.spans["errors"] = [doc[0:1], doc[1:3]]
+> for error_span in doc.spans["errors"]:
+> print(error_span)
+> ```
+
+| Name | Description |
+| ---------- | ----------------------------------- |
+| **YIELDS** | A span in this span group. ~~Span~~ |
+
## SpanGroup.append {#append tag="method"}
Add a [`Span`](/api/span) object to the group. The span must refer to the same
diff --git a/website/docs/api/spanruler.md b/website/docs/api/spanruler.md
index b573f7c58..31f04ccf9 100644
--- a/website/docs/api/spanruler.md
+++ b/website/docs/api/spanruler.md
@@ -46,16 +46,17 @@ how the component should be configured. You can override its settings via the
> nlp.add_pipe("span_ruler", config=config)
> ```
-| Setting | Description |
-| --------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| `spans_key` | The spans key to save the spans under. If `None`, no spans are saved. Defaults to `"ruler"`. ~~Optional[str]~~ |
-| `spans_filter` | The optional method to filter spans before they are assigned to doc.spans. Defaults to `None`. ~~Optional[Callable[[Iterable[Span], Iterable[Span]], List[Span]]]~~ |
-| `annotate_ents` | Whether to save spans to doc.ents. Defaults to `False`. ~~bool~~ |
-| `ents_filter` | The method to filter spans before they are assigned to doc.ents. Defaults to `util.filter_chain_spans`. ~~Callable[[Iterable[Span], Iterable[Span]], List[Span]]~~ |
-| `phrase_matcher_attr` | Token attribute to match on, passed to the internal PhraseMatcher as `attr`. Defaults to `None`. ~~Optional[Union[int, str]]~~ |
-| `validate` | Whether patterns should be validated, passed to Matcher and PhraseMatcher as `validate`. Defaults to `False`. ~~bool~~ |
-| `overwrite` | Whether to remove any existing spans under `Doc.spans[spans key]` if `spans_key` is set, or to remove any ents under `Doc.ents` if `annotate_ents` is set. Defaults to `True`. ~~bool~~ |
-| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
+| Setting | Description |
+| ---------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| `spans_key` | The spans key to save the spans under. If `None`, no spans are saved. Defaults to `"ruler"`. ~~Optional[str]~~ |
+| `spans_filter` | The optional method to filter spans before they are assigned to doc.spans. Defaults to `None`. ~~Optional[Callable[[Iterable[Span], Iterable[Span]], List[Span]]]~~ |
+| `annotate_ents` | Whether to save spans to doc.ents. Defaults to `False`. ~~bool~~ |
+| `ents_filter` | The method to filter spans before they are assigned to doc.ents. Defaults to `util.filter_chain_spans`. ~~Callable[[Iterable[Span], Iterable[Span]], List[Span]]~~ |
+| `phrase_matcher_attr` | Token attribute to match on, passed to the internal `PhraseMatcher` as `attr`. Defaults to `None`. ~~Optional[Union[int, str]]~~ |
+| `matcher_fuzzy_compare` 3.5 | The fuzzy comparison method, passed on to the internal `Matcher`. Defaults to `spacy.matcher.levenshtein.levenshtein_compare`. ~~Callable~~ |
+| `validate` | Whether patterns should be validated, passed to `Matcher` and `PhraseMatcher` as `validate`. Defaults to `False`. ~~bool~~ |
+| `overwrite` | Whether to remove any existing spans under `Doc.spans[spans key]` if `spans_key` is set, or to remove any ents under `Doc.ents` if `annotate_ents` is set. Defaults to `True`. ~~bool~~ |
+| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/span_ruler.py
@@ -79,19 +80,20 @@ token pattern (list) or a phrase pattern (string). For example:
> ruler = SpanRuler(nlp, overwrite=True)
> ```
-| Name | Description |
-| --------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| `nlp` | The shared nlp object to pass the vocab to the matchers and process phrase patterns. ~~Language~~ |
-| `name` | Instance name of the current pipeline component. Typically passed in automatically from the factory when the component is added. Used to disable the current span ruler while creating phrase patterns with the nlp object. ~~str~~ |
-| _keyword-only_ | |
-| `spans_key` | The spans key to save the spans under. If `None`, no spans are saved. Defaults to `"ruler"`. ~~Optional[str]~~ |
-| `spans_filter` | The optional method to filter spans before they are assigned to doc.spans. Defaults to `None`. ~~Optional[Callable[[Iterable[Span], Iterable[Span]], List[Span]]]~~ |
-| `annotate_ents` | Whether to save spans to doc.ents. Defaults to `False`. ~~bool~~ |
-| `ents_filter` | The method to filter spans before they are assigned to doc.ents. Defaults to `util.filter_chain_spans`. ~~Callable[[Iterable[Span], Iterable[Span]], List[Span]]~~ |
-| `phrase_matcher_attr` | Token attribute to match on, passed to the internal PhraseMatcher as `attr`. Defaults to `None`. ~~Optional[Union[int, str]]~~ |
-| `validate` | Whether patterns should be validated, passed to Matcher and PhraseMatcher as `validate`. Defaults to `False`. ~~bool~~ |
-| `overwrite` | Whether to remove any existing spans under `Doc.spans[spans key]` if `spans_key` is set, or to remove any ents under `Doc.ents` if `annotate_ents` is set. Defaults to `True`. ~~bool~~ |
-| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
+| Name | Description |
+| ---------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| `nlp` | The shared nlp object to pass the vocab to the matchers and process phrase patterns. ~~Language~~ |
+| `name` | Instance name of the current pipeline component. Typically passed in automatically from the factory when the component is added. Used to disable the current span ruler while creating phrase patterns with the nlp object. ~~str~~ |
+| _keyword-only_ | |
+| `spans_key` | The spans key to save the spans under. If `None`, no spans are saved. Defaults to `"ruler"`. ~~Optional[str]~~ |
+| `spans_filter` | The optional method to filter spans before they are assigned to doc.spans. Defaults to `None`. ~~Optional[Callable[[Iterable[Span], Iterable[Span]], List[Span]]]~~ |
+| `annotate_ents` | Whether to save spans to doc.ents. Defaults to `False`. ~~bool~~ |
+| `ents_filter` | The method to filter spans before they are assigned to doc.ents. Defaults to `util.filter_chain_spans`. ~~Callable[[Iterable[Span], Iterable[Span]], List[Span]]~~ |
+| `phrase_matcher_attr` | Token attribute to match on, passed to the internal PhraseMatcher as `attr`. Defaults to `None`. ~~Optional[Union[int, str]]~~ |
+| `matcher_fuzzy_compare` 3.5 | The fuzzy comparison method, passed on to the internal `Matcher`. Defaults to `spacy.matcher.levenshtein.levenshtein_compare`. ~~Callable~~ |
+| `validate` | Whether patterns should be validated, passed to Matcher and PhraseMatcher as `validate`. Defaults to `False`. ~~bool~~ |
+| `overwrite` | Whether to remove any existing spans under `Doc.spans[spans key]` if `spans_key` is set, or to remove any ents under `Doc.ents` if `annotate_ents` is set. Defaults to `True`. ~~bool~~ |
+| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
## SpanRuler.initialize {#initialize tag="method"}
diff --git a/website/docs/api/top-level.md b/website/docs/api/top-level.md
index 26a5d42f4..9d3e463d8 100644
--- a/website/docs/api/top-level.md
+++ b/website/docs/api/top-level.md
@@ -237,16 +237,17 @@ browser. Will run a simple web server.
> displacy.serve([doc1, doc2], style="dep")
> ```
-| Name | Description |
-| --------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| `docs` | Document(s) or span(s) to visualize. ~~Union[Iterable[Union[Doc, Span]], Doc, Span]~~ |
-| `style` | Visualization style, `"dep"`, `"ent"` or `"span"` 3.3. Defaults to `"dep"`. ~~str~~ |
-| `page` | Render markup as full HTML page. Defaults to `True`. ~~bool~~ |
-| `minify` | Minify HTML markup. Defaults to `False`. ~~bool~~ |
-| `options` | [Visualizer-specific options](#displacy_options), e.g. colors. ~~Dict[str, Any]~~ |
-| `manual` | Don't parse `Doc` and instead expect a dict or list of dicts. [See here](/usage/visualizers#manual-usage) for formats and examples. Defaults to `False`. ~~bool~~ |
-| `port` | Port to serve visualization. Defaults to `5000`. ~~int~~ |
-| `host` | Host to serve visualization. Defaults to `"0.0.0.0"`. ~~str~~ |
+| Name | Description |
+| ------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| `docs` | Document(s) or span(s) to visualize. ~~Union[Iterable[Union[Doc, Span]], Doc, Span]~~ |
+| `style` | Visualization style, `"dep"`, `"ent"` or `"span"` 3.3. Defaults to `"dep"`. ~~str~~ |
+| `page` | Render markup as full HTML page. Defaults to `True`. ~~bool~~ |
+| `minify` | Minify HTML markup. Defaults to `False`. ~~bool~~ |
+| `options` | [Visualizer-specific options](#displacy_options), e.g. colors. ~~Dict[str, Any]~~ |
+| `manual` | Don't parse `Doc` and instead expect a dict or list of dicts. [See here](/usage/visualizers#manual-usage) for formats and examples. Defaults to `False`. ~~bool~~ |
+| `port` | Port to serve visualization. Defaults to `5000`. ~~int~~ |
+| `host` | Host to serve visualization. Defaults to `"0.0.0.0"`. ~~str~~ |
+| `auto_select_port` | If `True`, automatically switch to a different port if the specified port is already in use. Defaults to `False`. ~~bool~~ |
### displacy.render {#displacy.render tag="method" new="2"}
@@ -266,7 +267,7 @@ Render a dependency parse tree or named entity visualization.
| ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `docs` | Document(s) or span(s) to visualize. ~~Union[Iterable[Union[Doc, Span, dict]], Doc, Span, dict]~~ |
| `style` | Visualization style, `"dep"`, `"ent"` or `"span"` 3.3. Defaults to `"dep"`. ~~str~~ |
-| `page` | Render markup as full HTML page. Defaults to `True`. ~~bool~~ |
+| `page` | Render markup as full HTML page. Defaults to `False`. ~~bool~~ |
| `minify` | Minify HTML markup. Defaults to `False`. ~~bool~~ |
| `options` | [Visualizer-specific options](#displacy_options), e.g. colors. ~~Dict[str, Any]~~ |
| `manual` | Don't parse `Doc` and instead expect a dict or list of dicts. [See here](/usage/visualizers#manual-usage) for formats and examples. Defaults to `False`. ~~bool~~ |
@@ -513,7 +514,7 @@ a [Weights & Biases](https://www.wandb.com/) dashboard.
Instead of using one of the built-in loggers, you can
[implement your own](/usage/training#custom-logging).
-#### spacy.ConsoleLogger.v2 {#ConsoleLogger tag="registered function"}
+#### spacy.ConsoleLogger.v2 {tag="registered function"}
> #### Example config
>
@@ -564,11 +565,33 @@ start decreasing across epochs.
-| Name | Description |
-| ---------------- | --------------------------------------------------------------------- |
-| `progress_bar` | Whether the logger should print the progress bar ~~bool~~ |
-| `console_output` | Whether the logger should print the logs on the console. ~~bool~~ |
-| `output_file` | The file to save the training logs to. ~~Optional[Union[str, Path]]~~ |
+| Name | Description |
+| ---------------- | ---------------------------------------------------------------------------------------------------------------------------- |
+| `progress_bar` | Whether the logger should print a progress bar tracking the steps till the next evaluation pass (default: `False`). ~~bool~~ |
+| `console_output` | Whether the logger should print the logs in the console (default: `True`). ~~bool~~ |
+| `output_file` | The file to save the training logs to (default: `None`). ~~Optional[Union[str, Path]]~~ |
+
+#### spacy.ConsoleLogger.v3 {#ConsoleLogger tag="registered function"}
+
+> #### Example config
+>
+> ```ini
+> [training.logger]
+> @loggers = "spacy.ConsoleLogger.v3"
+> progress_bar = "all_steps"
+> console_output = true
+> output_file = "training_log.jsonl"
+> ```
+
+Writes the results of a training step to the console in a tabular format and
+optionally saves them to a `jsonl` file.
+
+| Name | Description |
+| ---------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| `progress_bar` | Type of progress bar to show in the console: `"train"`, `"eval"` or `None`. |
+| | The bar tracks the number of steps until `training.max_steps` and `training.eval_frequency` are reached respectively (default: `None`). ~~Optional[str]~~ |
+| `console_output` | Whether the logger should print the logs in the console (default: `True`). ~~bool~~ |
+| `output_file` | The file to save the training logs to (default: `None`). ~~Optional[Union[str, Path]]~~ |
## Readers {#readers}
diff --git a/website/docs/usage/rule-based-matching.md b/website/docs/usage/rule-based-matching.md
index ad8ea27f3..3e15fca36 100644
--- a/website/docs/usage/rule-based-matching.md
+++ b/website/docs/usage/rule-based-matching.md
@@ -364,6 +364,46 @@ else:
+#### Fuzzy matching {#fuzzy new="3.5"}
+
+Fuzzy matching allows you to match tokens with alternate spellings, typos, etc.
+without specifying every possible variant.
+
+```python
+# Matches "favourite", "favorites", "gavorite", "theatre", "theatr", ...
+pattern = [{"TEXT": {"FUZZY": "favorite"}},
+ {"TEXT": {"FUZZY": "theater"}}]
+```
+
+The `FUZZY` attribute allows fuzzy matches for any attribute string value,
+including custom attributes. Just like `REGEX`, it always needs to be applied to
+an attribute like `TEXT` or `LOWER`. By default `FUZZY` allows a Levenshtein
+edit distance of at least 2 and up to 30% of the pattern string length. Using
+the more specific attributes `FUZZY1`..`FUZZY9` you can specify the maximum
+allowed edit distance directly.
+
+```python
+# Match lowercase with fuzzy matching (allows 2 edits)
+pattern = [{"LOWER": {"FUZZY": "definitely"}}]
+
+# Match custom attribute values with fuzzy matching (allows 2 edits)
+pattern = [{"_": {"country": {"FUZZY": "Kyrgyzstan"}}}]
+
+# Match with exact Levenshtein edit distance limits (allows 3 edits)
+pattern = [{"_": {"country": {"FUZZY3": "Kyrgyzstan"}}}]
+```
+
+#### Regex and fuzzy matching with lists {#regex-fuzzy-lists new="3.5"}
+
+Starting in spaCy v3.5, both `REGEX` and `FUZZY` can be combined with the
+attributes `IN` and `NOT_IN`:
+
+```python
+pattern = [{"TEXT": {"FUZZY": {"IN": ["awesome", "cool", "wonderful"]}}}]
+
+pattern = [{"TEXT": {"REGEX": {"NOT_IN": ["^awe(some)?$", "^wonder(ful)?"]}}}]
+```
+
---
#### Operators and quantifiers {#quantifiers}
diff --git a/website/meta/sidebars.json b/website/meta/sidebars.json
index 2d8745d77..339e4085b 100644
--- a/website/meta/sidebars.json
+++ b/website/meta/sidebars.json
@@ -45,7 +45,7 @@
{ "text": "v2.x Documentation", "url": "https://v2.spacy.io" },
{
"text": "Custom Solutions",
- "url": "https://explosion.ai/spacy-tailored-pipelines"
+ "url": "https://explosion.ai/custom-solutions"
}
]
}
diff --git a/website/meta/site.json b/website/meta/site.json
index 360a72178..fa79d3c69 100644
--- a/website/meta/site.json
+++ b/website/meta/site.json
@@ -51,7 +51,7 @@
{ "text": "Online Course", "url": "https://course.spacy.io" },
{
"text": "Custom Solutions",
- "url": "https://explosion.ai/spacy-tailored-pipelines"
+ "url": "https://explosion.ai/custom-solutions"
}
]
},
diff --git a/website/meta/universe.json b/website/meta/universe.json
index 97b53e9c5..99d121507 100644
--- a/website/meta/universe.json
+++ b/website/meta/universe.json
@@ -1023,25 +1023,6 @@
},
"category": ["pipeline"]
},
- {
- "id": "spacy-sentence-segmenter",
- "title": "Sentence Segmenter",
- "slogan": "Custom sentence segmentation for spaCy",
- "code_example": [
- "from seg.newline.segmenter import NewLineSegmenter",
- "import spacy",
- "",
- "nlseg = NewLineSegmenter()",
- "nlp = spacy.load('en')",
- "nlp.add_pipe(nlseg.set_sent_starts, name='sentence_segmenter', before='parser')",
- "doc = nlp(my_doc_text)"
- ],
- "author": "tc64",
- "author_links": {
- "github": "tc64"
- },
- "category": ["pipeline"]
- },
{
"id": "spacy_cld",
"title": "spaCy-CLD",
@@ -1468,13 +1449,26 @@
"image": "https://jasonkessler.github.io/2012conventions0.0.2.2.png",
"code_example": [
"import spacy",
- "import scattertext as st",
"",
- "nlp = spacy.load('en')",
- "corpus = st.CorpusFromPandas(convention_df,",
- " category_col='party',",
- " text_col='text',",
- " nlp=nlp).build()"
+ "from scattertext import SampleCorpora, produce_scattertext_explorer",
+ "from scattertext import produce_scattertext_html",
+ "from scattertext.CorpusFromPandas import CorpusFromPandas",
+ "",
+ "nlp = spacy.load('en_core_web_sm')",
+ "convention_df = SampleCorpora.ConventionData2012.get_data()",
+ "corpus = CorpusFromPandas(convention_df,",
+ " category_col='party',",
+ " text_col='text',",
+ " nlp=nlp).build()",
+ "",
+ "html = produce_scattertext_html(corpus,",
+ " category='democrat',",
+ " category_name='Democratic',",
+ " not_category_name='Republican',",
+ " minimum_term_frequency=5,",
+ " width_in_pixels=1000)",
+ "open('./simple.html', 'wb').write(html.encode('utf-8'))",
+ "print('Open ./simple.html in Chrome or Firefox.')"
],
"author": "Jason Kessler",
"author_links": {
@@ -4068,6 +4062,33 @@
"author_links": {
"github": "yasufumy"
}
+ },
+ {
+ "id": "spacy-pythainlp",
+ "title": "spaCy-PyThaiNLP",
+ "slogan": "PyThaiNLP for spaCy",
+ "description": "This package wraps the PyThaiNLP library to add support for Thai to spaCy.",
+ "github": "PyThaiNLP/spaCy-PyThaiNLP",
+ "code_example": [
+ "import spacy",
+ "import spacy_pythainlp.core",
+ "",
+ "nlp = spacy.blank('th')",
+ "nlp.add_pipe('pythainlp')",
+ "doc = nlp('ผมเป็นคนไทย แต่มะลิอยากไปโรงเรียนส่วนผมจะไปไหน ผมอยากไปเที่ยว')",
+ "",
+ "print(list(doc.sents))",
+ "# output: [ผมเป็นคนไทย แต่มะลิอยากไปโรงเรียนส่วนผมจะไปไหน , ผมอยากไปเที่ยว]"
+ ],
+ "code_language": "python",
+ "author": "Wannaphong Phatthiyaphaibun",
+ "author_links": {
+ "twitter": "@wannaphong_p",
+ "github": "wannaphong",
+ "website": "https://iam.wannaphong.com/"
+ },
+ "category": ["pipeline", "research"],
+ "tags": ["Thai"]
}
],
diff --git a/website/src/widgets/landing.js b/website/src/widgets/landing.js
index b7ae35f6e..c3aaa8a22 100644
--- a/website/src/widgets/landing.js
+++ b/website/src/widgets/landing.js
@@ -105,13 +105,13 @@ const Landing = ({ data }) => {
-
+