mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Replace lexeme_norm warning with logging
This commit is contained in:
parent
37814b608d
commit
8128e5eb35
|
@ -14,7 +14,7 @@ from . import pipeline # noqa: F401
|
|||
from .cli.info import info # noqa: F401
|
||||
from .glossary import explain # noqa: F401
|
||||
from .about import __version__ # noqa: F401
|
||||
from .util import registry # noqa: F401
|
||||
from .util import registry, logger # noqa: F401
|
||||
|
||||
from .errors import Errors
|
||||
from .language import Language
|
||||
|
|
|
@ -9,6 +9,7 @@ from thinc.api import use_pytorch_for_gpu_memory, require_gpu, fix_random_seed
|
|||
from thinc.api import Config, Optimizer
|
||||
import random
|
||||
import typer
|
||||
import logging
|
||||
|
||||
from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error
|
||||
from ._util import import_code, get_sourced_components
|
||||
|
@ -17,7 +18,6 @@ from .. import util
|
|||
from ..gold.example import Example
|
||||
from ..errors import Errors
|
||||
|
||||
|
||||
# Don't remove - required to load the built-in architectures
|
||||
from ..ml import models # noqa: F401
|
||||
|
||||
|
@ -48,6 +48,7 @@ def train_cli(
|
|||
used to register custom functions and architectures that can then be
|
||||
referenced in the config.
|
||||
"""
|
||||
util.logger.setLevel(logging.DEBUG if verbose else logging.ERROR)
|
||||
verify_cli_args(config_path, output_path)
|
||||
overrides = parse_config_overrides(ctx.args)
|
||||
import_code(code_path)
|
||||
|
|
|
@ -409,7 +409,7 @@ cdef class Parser(Pipe):
|
|||
lexeme_norms = self.vocab.lookups.get_table("lexeme_norm", {})
|
||||
if len(lexeme_norms) == 0 and self.vocab.lang in util.LEXEME_NORM_LANGS:
|
||||
langs = ", ".join(util.LEXEME_NORM_LANGS)
|
||||
warnings.warn(Warnings.W033.format(model="parser or NER", langs=langs))
|
||||
util.logger.debug(Warnings.W033.format(model="parser or NER", langs=langs))
|
||||
actions = self.moves.get_actions(
|
||||
examples=get_examples(),
|
||||
min_freq=self.cfg['min_action_freq'],
|
||||
|
|
|
@ -1,17 +1,17 @@
|
|||
import pytest
|
||||
|
||||
from spacy import util
|
||||
from spacy.lang.en import English
|
||||
|
||||
from spacy.language import Language
|
||||
from spacy.lookups import Lookups
|
||||
from spacy.pipeline._parser_internals.ner import BiluoPushDown
|
||||
from spacy.gold import Example
|
||||
from spacy.tokens import Doc
|
||||
from spacy.vocab import Vocab
|
||||
import logging
|
||||
|
||||
from ..util import make_tempdir
|
||||
|
||||
|
||||
TRAIN_DATA = [
|
||||
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
|
||||
("I like London and Berlin.", {"entities": [(7, 13, "LOC"), (18, 24, "LOC")]}),
|
||||
|
@ -56,6 +56,7 @@ def test_get_oracle_moves(tsys, doc, entity_annots):
|
|||
assert names == ["U-PERSON", "O", "O", "B-GPE", "L-GPE", "O"]
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_get_oracle_moves_negative_entities(tsys, doc, entity_annots):
|
||||
entity_annots = [(s, e, "!" + label) for s, e, label in entity_annots]
|
||||
example = Example.from_dict(doc, {"entities": entity_annots})
|
||||
|
@ -332,19 +333,21 @@ def test_overfitting_IO():
|
|||
assert ents2[0].label_ == "LOC"
|
||||
|
||||
|
||||
def test_ner_warns_no_lookups():
|
||||
def test_ner_warns_no_lookups(caplog):
|
||||
nlp = English()
|
||||
assert nlp.lang in util.LEXEME_NORM_LANGS
|
||||
nlp.vocab.lookups = Lookups()
|
||||
assert not len(nlp.vocab.lookups)
|
||||
nlp.add_pipe("ner")
|
||||
with pytest.warns(UserWarning):
|
||||
with caplog.at_level(logging.DEBUG):
|
||||
nlp.begin_training()
|
||||
assert "W033" in caplog.text
|
||||
caplog.clear()
|
||||
nlp.vocab.lookups.add_table("lexeme_norm")
|
||||
nlp.vocab.lookups.get_table("lexeme_norm")["a"] = "A"
|
||||
with pytest.warns(None) as record:
|
||||
with caplog.at_level(logging.DEBUG):
|
||||
nlp.begin_training()
|
||||
assert not record.list
|
||||
assert "W033" not in caplog.text
|
||||
|
||||
|
||||
@Language.factory("blocker")
|
||||
|
|
|
@ -25,7 +25,6 @@ def test_issue2070():
|
|||
assert len(doc) == 11
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_issue2179():
|
||||
"""Test that spurious 'extra_labels' aren't created when initializing NER."""
|
||||
nlp = Italian()
|
||||
|
@ -135,7 +134,6 @@ def test_issue2464(en_vocab):
|
|||
assert len(matches) == 3
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_issue2482():
|
||||
"""Test we can serialize and deserialize a blank NER or parser model."""
|
||||
nlp = Italian()
|
||||
|
|
|
@ -136,7 +136,6 @@ def test_issue2782(text, lang_cls):
|
|||
assert doc[0].like_num
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_issue2800():
|
||||
"""Test issue that arises when too many labels are added to NER model.
|
||||
Used to cause segfault.
|
||||
|
|
|
@ -90,7 +90,6 @@ def test_issue3199():
|
|||
assert list(doc[0:3].noun_chunks) == []
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_issue3209():
|
||||
"""Test issue that occurred in spaCy nightly where NER labels were being
|
||||
mapped to classes incorrectly after loading the model, when the labels
|
||||
|
|
|
@ -91,7 +91,6 @@ def test_issue_3526_3(en_vocab):
|
|||
assert new_ruler.overwrite is not ruler.overwrite
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_issue_3526_4(en_vocab):
|
||||
nlp = Language(vocab=en_vocab)
|
||||
patterns = [{"label": "ORG", "pattern": "Apple"}]
|
||||
|
@ -252,7 +251,6 @@ def test_issue3803():
|
|||
assert [t.like_num for t in doc] == [True, True, True, True, True, True]
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_issue3830_no_subtok():
|
||||
"""Test that the parser doesn't have subtok label if not learn_tokens"""
|
||||
config = {
|
||||
|
@ -270,7 +268,6 @@ def test_issue3830_no_subtok():
|
|||
assert "subtok" not in parser.labels
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_issue3830_with_subtok():
|
||||
"""Test that the parser does have subtok label if learn_tokens=True."""
|
||||
config = {
|
||||
|
@ -333,7 +330,6 @@ def test_issue3879(en_vocab):
|
|||
assert len(matcher(doc)) == 2 # fails because of a FP match 'is a test'
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_issue3880():
|
||||
"""Test that `nlp.pipe()` works when an empty string ends the batch.
|
||||
|
||||
|
|
|
@ -81,7 +81,6 @@ def test_issue4030():
|
|||
assert doc.cats["inoffensive"] == 0.0
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_issue4042():
|
||||
"""Test that serialization of an EntityRuler before NER works fine."""
|
||||
nlp = English()
|
||||
|
@ -110,7 +109,6 @@ def test_issue4042():
|
|||
assert doc2.ents[0].label_ == "MY_ORG"
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_issue4042_bug2():
|
||||
"""
|
||||
Test that serialization of an NER works fine when new labels were added.
|
||||
|
@ -242,7 +240,6 @@ def test_issue4190():
|
|||
assert result_1b == result_2
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_issue4267():
|
||||
""" Test that running an entity_ruler after ner gives consistent results"""
|
||||
nlp = English()
|
||||
|
@ -324,7 +321,6 @@ def test_issue4313():
|
|||
entity_scores[(start, end, label)] += score
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_issue4348():
|
||||
"""Test that training the tagger with empty data, doesn't throw errors"""
|
||||
nlp = English()
|
||||
|
|
|
@ -179,7 +179,6 @@ def test_issue4707():
|
|||
assert "entity_ruler" in new_nlp.pipe_names
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_issue4725_1():
|
||||
""" Ensure the pickling of the NER goes well"""
|
||||
vocab = Vocab(vectors_name="test_vocab_add_vector")
|
||||
|
@ -198,7 +197,6 @@ def test_issue4725_1():
|
|||
assert ner2.cfg["update_with_oracle_cut_size"] == 111
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_issue4725_2():
|
||||
# ensures that this runs correctly and doesn't hang or crash because of the global vectors
|
||||
# if it does crash, it's usually because of calling 'spawn' for multiprocessing (e.g. on Windows),
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
import pytest
|
||||
from spacy.lang.en import English
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_issue5152():
|
||||
# Test that the comparison between a Span and a Token, goes well
|
||||
# There was a bug when the number of tokens in the span equaled the number of characters in the token (!)
|
||||
|
@ -14,6 +13,8 @@ def test_issue5152():
|
|||
span_2 = text[0:3] # Talk about being
|
||||
span_3 = text_var[0:3] # Talk of being
|
||||
token = y[0] # Let
|
||||
assert span.similarity(token) == 0.0
|
||||
with pytest.warns(UserWarning):
|
||||
assert span.similarity(token) == 0.0
|
||||
assert span.similarity(span_2) == 1.0
|
||||
assert span_2.similarity(span_3) < 1.0
|
||||
with pytest.warns(UserWarning):
|
||||
assert span_2.similarity(span_3) < 1.0
|
||||
|
|
|
@ -154,6 +154,7 @@ def test_example_from_dict_some_ner(en_vocab):
|
|||
assert ner_tags == ["U-LOC", None, None, None]
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_json2docs_no_ner(en_vocab):
|
||||
data = [
|
||||
{
|
||||
|
@ -506,6 +507,7 @@ def test_roundtrip_docs_to_docbin(doc):
|
|||
assert cats["BAKING"] == reloaded_example.reference.cats["BAKING"]
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_make_orth_variants(doc):
|
||||
nlp = English()
|
||||
with make_tempdir() as tmpdir:
|
||||
|
@ -586,7 +588,7 @@ def test_tuple_format_implicit():
|
|||
("Uber blew through $1 million a week", {"entities": [(0, 4, "ORG")]}),
|
||||
(
|
||||
"Spotify steps up Asia expansion",
|
||||
{"entities": [(0, 8, "ORG"), (17, 21, "LOC")]},
|
||||
{"entities": [(0, 7, "ORG"), (17, 21, "LOC")]},
|
||||
),
|
||||
("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}),
|
||||
]
|
||||
|
@ -601,7 +603,7 @@ def test_tuple_format_implicit_invalid():
|
|||
("Uber blew through $1 million a week", {"frumble": [(0, 4, "ORG")]}),
|
||||
(
|
||||
"Spotify steps up Asia expansion",
|
||||
{"entities": [(0, 8, "ORG"), (17, 21, "LOC")]},
|
||||
{"entities": [(0, 7, "ORG"), (17, 21, "LOC")]},
|
||||
),
|
||||
("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}),
|
||||
]
|
||||
|
|
|
@ -46,6 +46,7 @@ def test_Example_from_dict_with_tags(pred_words, annots):
|
|||
assert aligned_tags == ["NN" for _ in predicted]
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_aligned_tags():
|
||||
pred_words = ["Apply", "some", "sunscreen", "unless", "you", "can", "not"]
|
||||
gold_words = ["Apply", "some", "sun", "screen", "unless", "you", "cannot"]
|
||||
|
@ -198,8 +199,8 @@ def test_Example_from_dict_with_entities(annots):
|
|||
def test_Example_from_dict_with_entities_invalid(annots):
|
||||
vocab = Vocab()
|
||||
predicted = Doc(vocab, words=annots["words"])
|
||||
example = Example.from_dict(predicted, annots)
|
||||
# TODO: shouldn't this throw some sort of warning ?
|
||||
with pytest.warns(UserWarning):
|
||||
example = Example.from_dict(predicted, annots)
|
||||
assert len(list(example.reference.ents)) == 0
|
||||
|
||||
|
||||
|
|
|
@ -24,6 +24,7 @@ import tempfile
|
|||
import shutil
|
||||
import shlex
|
||||
import inspect
|
||||
import logging
|
||||
|
||||
try:
|
||||
import cupy.random
|
||||
|
@ -58,6 +59,10 @@ OOV_RANK = numpy.iinfo(numpy.uint64).max
|
|||
LEXEME_NORM_LANGS = ["da", "de", "el", "en", "id", "lb", "pt", "ru", "sr", "ta", "th"]
|
||||
|
||||
|
||||
logging.basicConfig()
|
||||
logger = logging.getLogger("spacy")
|
||||
|
||||
|
||||
class registry(thinc.registry):
|
||||
languages = catalogue.create("spacy", "languages", entry_points=True)
|
||||
architectures = catalogue.create("spacy", "architectures", entry_points=True)
|
||||
|
|
Loading…
Reference in New Issue
Block a user