Merge branch 'develop' into nightly.spacy.io

This commit is contained in:
Ines Montani 2020-10-01 22:15:59 +02:00
commit 812c15c213
161 changed files with 3333 additions and 2422 deletions

View File

@ -1,7 +1,7 @@
SHELL := /bin/bash SHELL := /bin/bash
ifndef SPACY_EXTRAS ifndef SPACY_EXTRAS
override SPACY_EXTRAS = spacy-lookups-data==0.4.0.dev0 jieba pkuseg==0.0.25 sudachipy sudachidict_core override SPACY_EXTRAS = spacy-lookups-data==1.0.0rc0 jieba pkuseg==0.0.25 pickle5 sudachipy sudachidict_core
endif endif
ifndef PYVER ifndef PYVER

View File

@ -6,7 +6,7 @@ requires = [
"cymem>=2.0.2,<2.1.0", "cymem>=2.0.2,<2.1.0",
"preshed>=3.0.2,<3.1.0", "preshed>=3.0.2,<3.1.0",
"murmurhash>=0.28.0,<1.1.0", "murmurhash>=0.28.0,<1.1.0",
"thinc>=8.0.0a35,<8.0.0a40", "thinc>=8.0.0a42,<8.0.0a50",
"blis>=0.4.0,<0.5.0", "blis>=0.4.0,<0.5.0",
"pytokenizations", "pytokenizations",
"pathy" "pathy"

View File

@ -1,7 +1,7 @@
# Our libraries # Our libraries
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0 preshed>=3.0.2,<3.1.0
thinc>=8.0.0a35,<8.0.0a40 thinc>=8.0.0a42,<8.0.0a50
blis>=0.4.0,<0.5.0 blis>=0.4.0,<0.5.0
ml_datasets==0.2.0a0 ml_datasets==0.2.0a0
murmurhash>=0.28.0,<1.1.0 murmurhash>=0.28.0,<1.1.0
@ -14,7 +14,7 @@ pathy
numpy>=1.15.0 numpy>=1.15.0
requests>=2.13.0,<3.0.0 requests>=2.13.0,<3.0.0
tqdm>=4.38.0,<5.0.0 tqdm>=4.38.0,<5.0.0
pydantic>=1.3.0,<2.0.0 pydantic>=1.5.0,<2.0.0
pytokenizations pytokenizations
# Official Python utilities # Official Python utilities
setuptools setuptools

View File

@ -34,13 +34,13 @@ setup_requires =
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0 preshed>=3.0.2,<3.1.0
murmurhash>=0.28.0,<1.1.0 murmurhash>=0.28.0,<1.1.0
thinc>=8.0.0a35,<8.0.0a40 thinc>=8.0.0a42,<8.0.0a50
install_requires = install_requires =
# Our libraries # Our libraries
murmurhash>=0.28.0,<1.1.0 murmurhash>=0.28.0,<1.1.0
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0 preshed>=3.0.2,<3.1.0
thinc>=8.0.0a35,<8.0.0a40 thinc>=8.0.0a42,<8.0.0a50
blis>=0.4.0,<0.5.0 blis>=0.4.0,<0.5.0
wasabi>=0.8.0,<1.1.0 wasabi>=0.8.0,<1.1.0
srsly>=2.1.0,<3.0.0 srsly>=2.1.0,<3.0.0
@ -51,7 +51,7 @@ install_requires =
tqdm>=4.38.0,<5.0.0 tqdm>=4.38.0,<5.0.0
numpy>=1.15.0 numpy>=1.15.0
requests>=2.13.0,<3.0.0 requests>=2.13.0,<3.0.0
pydantic>=1.3.0,<2.0.0 pydantic>=1.5.0,<2.0.0
pytokenizations pytokenizations
# Official Python utilities # Official Python utilities
setuptools setuptools
@ -65,7 +65,7 @@ console_scripts =
[options.extras_require] [options.extras_require]
lookups = lookups =
spacy_lookups_data==0.4.0.dev0 spacy_lookups_data==1.0.0rc0
cuda = cuda =
cupy>=5.0.0b4,<9.0.0 cupy>=5.0.0b4,<9.0.0
cuda80 = cuda80 =
@ -98,7 +98,7 @@ universal = false
formats = gztar formats = gztar
[flake8] [flake8]
ignore = E203, E266, E501, E731, W503 ignore = E203, E266, E501, E731, W503, E741
max-line-length = 80 max-line-length = 80
select = B,C,E,F,W,T4,B9 select = B,C,E,F,W,T4,B9
exclude = exclude =

View File

@ -1,6 +1,6 @@
# fmt: off # fmt: off
__title__ = "spacy-nightly" __title__ = "spacy-nightly"
__version__ = "3.0.0a26" __version__ = "3.0.0a28"
__release__ = True __release__ = True
__download_url__ = "https://github.com/explosion/spacy-models/releases/download" __download_url__ = "https://github.com/explosion/spacy-models/releases/download"
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json" __compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"

View File

@ -15,7 +15,7 @@ from .debug_config import debug_config # noqa: F401
from .debug_model import debug_model # noqa: F401 from .debug_model import debug_model # noqa: F401
from .evaluate import evaluate # noqa: F401 from .evaluate import evaluate # noqa: F401
from .convert import convert # noqa: F401 from .convert import convert # noqa: F401
from .init_model import init_model # noqa: F401 from .init_pipeline import init_pipeline_cli # noqa: F401
from .init_config import init_config, fill_config # noqa: F401 from .init_config import init_config, fill_config # noqa: F401
from .validate import validate # noqa: F401 from .validate import validate # noqa: F401
from .project.clone import project_clone # noqa: F401 from .project.clone import project_clone # noqa: F401

View File

@ -10,12 +10,13 @@ from click import NoSuchOption
from click.parser import split_arg_string from click.parser import split_arg_string
from typer.main import get_command from typer.main import get_command
from contextlib import contextmanager from contextlib import contextmanager
from thinc.config import Config, ConfigValidationError from thinc.api import Config, ConfigValidationError, require_gpu
from configparser import InterpolationError from configparser import InterpolationError
import os import os
from ..schemas import ProjectConfigSchema, validate from ..schemas import ProjectConfigSchema, validate
from ..util import import_file, run_command, make_tempdir, registry, logger from ..util import import_file, run_command, make_tempdir, registry, logger
from ..util import ENV_VARS
if TYPE_CHECKING: if TYPE_CHECKING:
from pathy import Pathy # noqa: F401 from pathy import Pathy # noqa: F401
@ -39,7 +40,6 @@ commands to check and validate your config files, training and evaluation data,
and custom model implementations. and custom model implementations.
""" """
INIT_HELP = """Commands for initializing configs and pipeline packages.""" INIT_HELP = """Commands for initializing configs and pipeline packages."""
OVERRIDES_ENV_VAR = "SPACY_CONFIG_OVERRIDES"
# Wrappers for Typer's annotations. Initially created to set defaults and to # Wrappers for Typer's annotations. Initially created to set defaults and to
# keep the names short, but not needed at the moment. # keep the names short, but not needed at the moment.
@ -65,7 +65,7 @@ def setup_cli() -> None:
def parse_config_overrides( def parse_config_overrides(
args: List[str], env_var: Optional[str] = OVERRIDES_ENV_VAR args: List[str], env_var: Optional[str] = ENV_VARS.CONFIG_OVERRIDES
) -> Dict[str, Any]: ) -> Dict[str, Any]:
"""Generate a dictionary of config overrides based on the extra arguments """Generate a dictionary of config overrides based on the extra arguments
provided on the CLI, e.g. --training.batch_size to override provided on the CLI, e.g. --training.batch_size to override
@ -226,24 +226,30 @@ def get_checksum(path: Union[Path, str]) -> str:
def show_validation_error( def show_validation_error(
file_path: Optional[Union[str, Path]] = None, file_path: Optional[Union[str, Path]] = None,
*, *,
title: str = "Config validation error", title: Optional[str] = None,
desc: str = "",
show_config: Optional[bool] = None,
hint_fill: bool = True, hint_fill: bool = True,
): ):
"""Helper to show custom config validation errors on the CLI. """Helper to show custom config validation errors on the CLI.
file_path (str / Path): Optional file path of config file, used in hints. file_path (str / Path): Optional file path of config file, used in hints.
title (str): Title of the custom formatted error. title (str): Override title of custom formatted error.
desc (str): Override description of custom formatted error.
show_config (bool): Whether to output the config the error refers to.
hint_fill (bool): Show hint about filling config. hint_fill (bool): Show hint about filling config.
""" """
try: try:
yield yield
except (ConfigValidationError, InterpolationError) as e: except ConfigValidationError as e:
msg.fail(title, spaced=True) title = title if title is not None else e.title
# TODO: This is kinda hacky and we should probably provide a better if e.desc:
# helper for this in Thinc desc = f"{e.desc}" if not desc else f"{e.desc}\n\n{desc}"
err_text = str(e).replace("Config validation error", "").strip() # Re-generate a new error object with overrides
print(err_text) err = e.from_error(e, title="", desc=desc, show_config=show_config)
if hint_fill and "field required" in err_text: msg.fail(title)
print(err.text.strip())
if hint_fill and "value_error.missing" in err.error_types:
config_path = file_path if file_path is not None else "config.cfg" config_path = file_path if file_path is not None else "config.cfg"
msg.text( msg.text(
"If your config contains missing values, you can run the 'init " "If your config contains missing values, you can run the 'init "
@ -252,6 +258,8 @@ def show_validation_error(
) )
print(f"{COMMAND} init fill-config {config_path} --base {config_path}\n") print(f"{COMMAND} init fill-config {config_path} --base {config_path}\n")
sys.exit(1) sys.exit(1)
except InterpolationError as e:
msg.fail("Config validation error", e, exits=1)
def import_code(code_path: Optional[Union[Path, str]]) -> None: def import_code(code_path: Optional[Union[Path, str]]) -> None:
@ -267,18 +275,6 @@ def import_code(code_path: Optional[Union[Path, str]]) -> None:
msg.fail(f"Couldn't load Python code: {code_path}", e, exits=1) msg.fail(f"Couldn't load Python code: {code_path}", e, exits=1)
def get_sourced_components(config: Union[Dict[str, Any], Config]) -> List[str]:
"""RETURNS (List[str]): All sourced components in the original config,
e.g. {"source": "en_core_web_sm"}. If the config contains a key
"factory", we assume it refers to a component factory.
"""
return [
name
for name, cfg in config.get("components", {}).items()
if "factory" not in cfg and "source" in cfg
]
def upload_file(src: Path, dest: Union[str, "Pathy"]) -> None: def upload_file(src: Path, dest: Union[str, "Pathy"]) -> None:
"""Upload a file. """Upload a file.
@ -450,3 +446,12 @@ def string_to_list(value: str, intify: bool = False) -> Union[List[str], List[in
p = int(p) p = int(p)
result.append(p) result.append(p)
return result return result
def setup_gpu(use_gpu: int) -> None:
"""Configure the GPU and log info."""
if use_gpu >= 0:
msg.info(f"Using GPU: {use_gpu}")
require_gpu(use_gpu)
else:
msg.info("Using CPU")

View File

@ -9,7 +9,8 @@ import sys
from ._util import app, Arg, Opt from ._util import app, Arg, Opt
from ..training import docs_to_json from ..training import docs_to_json
from ..tokens import DocBin from ..tokens import DocBin
from ..training.converters import iob_to_docs, conll_ner_to_docs, json_to_docs, conllu_to_docs from ..training.converters import iob_to_docs, conll_ner_to_docs, json_to_docs
from ..training.converters import conllu_to_docs
# Converters are matched by file extension except for ner/iob, which are # Converters are matched by file extension except for ner/iob, which are

View File

@ -2,11 +2,13 @@ from typing import Optional, Dict, Any, Union, List
from pathlib import Path from pathlib import Path
from wasabi import msg, table from wasabi import msg, table
from thinc.api import Config from thinc.api import Config
from thinc.config import VARIABLE_RE, ConfigValidationError from thinc.config import VARIABLE_RE
import typer import typer
from ._util import Arg, Opt, show_validation_error, parse_config_overrides from ._util import Arg, Opt, show_validation_error, parse_config_overrides
from ._util import import_code, debug_cli from ._util import import_code, debug_cli
from ..schemas import ConfigSchemaTraining
from ..util import registry
from .. import util from .. import util
@ -51,10 +53,11 @@ def debug_config(
msg.divider("Config validation") msg.divider("Config validation")
with show_validation_error(config_path): with show_validation_error(config_path):
config = util.load_config(config_path, overrides=overrides) config = util.load_config(config_path, overrides=overrides)
nlp, resolved = util.load_model_from_config(config) nlp = util.load_model_from_config(config)
# Use the resolved config here in case user has one function returning config = nlp.config.interpolate()
# a dict of corpora etc. T = registry.resolve(config["training"], schema=ConfigSchemaTraining)
check_section_refs(resolved, ["training.dev_corpus", "training.train_corpus"]) dot_names = [T["train_corpus"], T["dev_corpus"]]
util.resolve_dot_names(config, dot_names)
msg.good("Config is valid") msg.good("Config is valid")
if show_vars: if show_vars:
variables = get_variables(config) variables = get_variables(config)
@ -96,23 +99,3 @@ def get_variables(config: Config) -> Dict[str, Any]:
value = util.dot_to_object(config, path) value = util.dot_to_object(config, path)
result[variable] = repr(value) result[variable] = repr(value)
return result return result
def check_section_refs(config: Config, fields: List[str]) -> None:
"""Validate fields in the config that refer to other sections or values
(e.g. in the corpora) and make sure that those references exist.
"""
errors = []
for field in fields:
# If the field doesn't exist in the config, we ignore it
try:
value = util.dot_to_object(config, field)
except KeyError:
continue
try:
util.dot_to_object(config, value)
except KeyError:
msg = f"not a valid section reference: {value}"
errors.append({"loc": field.split("."), "msg": msg})
if errors:
raise ConfigValidationError(config, errors)

View File

@ -7,10 +7,13 @@ from wasabi import Printer, MESSAGES, msg
import typer import typer
from ._util import app, Arg, Opt, show_validation_error, parse_config_overrides from ._util import app, Arg, Opt, show_validation_error, parse_config_overrides
from ._util import import_code, debug_cli, get_sourced_components from ._util import import_code, debug_cli
from ..training import Corpus, Example from ..training import Example
from ..training.initialize import get_sourced_components
from ..schemas import ConfigSchemaTraining
from ..pipeline._parser_internals import nonproj from ..pipeline._parser_internals import nonproj
from ..language import Language from ..language import Language
from ..util import registry, resolve_dot_names
from .. import util from .. import util
@ -24,7 +27,7 @@ BLANK_MODEL_THRESHOLD = 2000
@debug_cli.command( @debug_cli.command(
"data", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}, "data", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}
) )
@app.command( @app.command(
"debug-data", "debug-data",
@ -34,8 +37,6 @@ BLANK_MODEL_THRESHOLD = 2000
def debug_data_cli( def debug_data_cli(
# fmt: off # fmt: off
ctx: typer.Context, # This is only used to read additional arguments ctx: typer.Context, # This is only used to read additional arguments
train_path: Path = Arg(..., help="Location of JSON-formatted training data", exists=True),
dev_path: Path = Arg(..., help="Location of JSON-formatted development data", exists=True),
config_path: Path = Arg(..., help="Path to config file", exists=True), config_path: Path = Arg(..., help="Path to config file", exists=True),
code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"), code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
ignore_warnings: bool = Opt(False, "--ignore-warnings", "-IW", help="Ignore warnings, only show stats and errors"), ignore_warnings: bool = Opt(False, "--ignore-warnings", "-IW", help="Ignore warnings, only show stats and errors"),
@ -59,8 +60,6 @@ def debug_data_cli(
overrides = parse_config_overrides(ctx.args) overrides = parse_config_overrides(ctx.args)
import_code(code_path) import_code(code_path)
debug_data( debug_data(
train_path,
dev_path,
config_path, config_path,
config_overrides=overrides, config_overrides=overrides,
ignore_warnings=ignore_warnings, ignore_warnings=ignore_warnings,
@ -71,8 +70,6 @@ def debug_data_cli(
def debug_data( def debug_data(
train_path: Path,
dev_path: Path,
config_path: Path, config_path: Path,
*, *,
config_overrides: Dict[str, Any] = {}, config_overrides: Dict[str, Any] = {},
@ -85,56 +82,29 @@ def debug_data(
no_print=silent, pretty=not no_format, ignore_warnings=ignore_warnings no_print=silent, pretty=not no_format, ignore_warnings=ignore_warnings
) )
# Make sure all files and paths exists if they are needed # Make sure all files and paths exists if they are needed
if not train_path.exists():
msg.fail("Training data not found", train_path, exits=1)
if not dev_path.exists():
msg.fail("Development data not found", dev_path, exits=1)
if not config_path.exists():
msg.fail("Config file not found", config_path, exists=1)
with show_validation_error(config_path): with show_validation_error(config_path):
cfg = util.load_config(config_path, overrides=config_overrides) cfg = util.load_config(config_path, overrides=config_overrides)
nlp, config = util.load_model_from_config(cfg) nlp = util.load_model_from_config(cfg)
config = nlp.config.interpolate()
T = registry.resolve(config["training"], schema=ConfigSchemaTraining)
# Use original config here, not resolved version # Use original config here, not resolved version
sourced_components = get_sourced_components(cfg) sourced_components = get_sourced_components(cfg)
frozen_components = config["training"]["frozen_components"] frozen_components = T["frozen_components"]
resume_components = [p for p in sourced_components if p not in frozen_components] resume_components = [p for p in sourced_components if p not in frozen_components]
pipeline = nlp.pipe_names pipeline = nlp.pipe_names
factory_names = [nlp.get_pipe_meta(pipe).factory for pipe in nlp.pipe_names] factory_names = [nlp.get_pipe_meta(pipe).factory for pipe in nlp.pipe_names]
tag_map_path = util.ensure_path(config["training"]["tag_map"])
tag_map = {}
if tag_map_path is not None:
tag_map = srsly.read_json(tag_map_path)
morph_rules_path = util.ensure_path(config["training"]["morph_rules"])
morph_rules = {}
if morph_rules_path is not None:
morph_rules = srsly.read_json(morph_rules_path)
# Replace tag map with provided mapping
nlp.vocab.morphology.load_tag_map(tag_map)
# Load morph rules
nlp.vocab.morphology.load_morph_exceptions(morph_rules)
msg.divider("Data file validation") msg.divider("Data file validation")
# Create the gold corpus to be able to better analyze data # Create the gold corpus to be able to better analyze data
loading_train_error_message = "" dot_names = [T["train_corpus"], T["dev_corpus"]]
loading_dev_error_message = "" train_corpus, dev_corpus = resolve_dot_names(config, dot_names)
with msg.loading("Loading corpus..."): train_dataset = list(train_corpus(nlp))
try: dev_dataset = list(dev_corpus(nlp))
train_dataset = list(Corpus(train_path)(nlp))
except ValueError as e:
loading_train_error_message = f"Training data cannot be loaded: {e}"
try:
dev_dataset = list(Corpus(dev_path)(nlp))
except ValueError as e:
loading_dev_error_message = f"Development data cannot be loaded: {e}"
if loading_train_error_message or loading_dev_error_message:
if loading_train_error_message:
msg.fail(loading_train_error_message)
if loading_dev_error_message:
msg.fail(loading_dev_error_message)
sys.exit(1)
msg.good("Corpus is loadable") msg.good("Corpus is loadable")
nlp.initialize(lambda: train_dataset)
msg.good("Pipeline can be initialized with data")
# Create all gold data here to avoid iterating over the train_dataset constantly # Create all gold data here to avoid iterating over the train_dataset constantly
gold_train_data = _compile_gold(train_dataset, factory_names, nlp, make_proj=True) gold_train_data = _compile_gold(train_dataset, factory_names, nlp, make_proj=True)
gold_train_unpreprocessed_data = _compile_gold( gold_train_unpreprocessed_data = _compile_gold(
@ -144,10 +114,10 @@ def debug_data(
train_texts = gold_train_data["texts"] train_texts = gold_train_data["texts"]
dev_texts = gold_dev_data["texts"] dev_texts = gold_dev_data["texts"]
frozen_components = config["training"]["frozen_components"] frozen_components = T["frozen_components"]
msg.divider("Training stats") msg.divider("Training stats")
msg.text(f"Language: {config['nlp']['lang']}") msg.text(f"Language: {nlp.lang}")
msg.text(f"Training pipeline: {', '.join(pipeline)}") msg.text(f"Training pipeline: {', '.join(pipeline)}")
if resume_components: if resume_components:
msg.text(f"Components from other pipelines: {', '.join(resume_components)}") msg.text(f"Components from other pipelines: {', '.join(resume_components)}")
@ -354,17 +324,12 @@ def debug_data(
if "tagger" in factory_names: if "tagger" in factory_names:
msg.divider("Part-of-speech Tagging") msg.divider("Part-of-speech Tagging")
labels = [label for label in gold_train_data["tags"]] labels = [label for label in gold_train_data["tags"]]
tag_map = nlp.vocab.morphology.tag_map # TODO: does this need to be updated?
msg.info(f"{len(labels)} label(s) in data ({len(tag_map)} label(s) in tag map)") msg.info(f"{len(labels)} label(s) in data")
labels_with_counts = _format_labels( labels_with_counts = _format_labels(
gold_train_data["tags"].most_common(), counts=True gold_train_data["tags"].most_common(), counts=True
) )
msg.text(labels_with_counts, show=verbose) msg.text(labels_with_counts, show=verbose)
non_tagmap = [l for l in labels if l not in tag_map]
if not non_tagmap:
msg.good(f"All labels present in tag map for language '{nlp.lang}'")
for label in non_tagmap:
msg.fail(f"Label '{label}' not found in tag map for language '{nlp.lang}'")
if "parser" in factory_names: if "parser" in factory_names:
has_low_data_warning = False has_low_data_warning = False

View File

@ -1,20 +1,24 @@
import warnings
from typing import Dict, Any, Optional, Iterable from typing import Dict, Any, Optional, Iterable
from pathlib import Path from pathlib import Path
from spacy.training import Example from spacy.training import Example
from spacy.util import dot_to_object from spacy.util import resolve_dot_names
from wasabi import msg from wasabi import msg
from thinc.api import require_gpu, fix_random_seed, set_dropout_rate, Adam from thinc.api import fix_random_seed, set_dropout_rate, Adam
from thinc.api import Model, data_validation, set_gpu_allocator from thinc.api import Model, data_validation, set_gpu_allocator
import typer import typer
from ._util import Arg, Opt, debug_cli, show_validation_error from ._util import Arg, Opt, debug_cli, show_validation_error
from ._util import parse_config_overrides, string_to_list from ._util import parse_config_overrides, string_to_list, setup_gpu
from ..schemas import ConfigSchemaTraining
from ..util import registry
from .. import util from .. import util
@debug_cli.command("model") @debug_cli.command(
"model",
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
)
def debug_model_cli( def debug_model_cli(
# fmt: off # fmt: off
ctx: typer.Context, # This is only used to read additional arguments ctx: typer.Context, # This is only used to read additional arguments
@ -38,11 +42,7 @@ def debug_model_cli(
DOCS: https://nightly.spacy.io/api/cli#debug-model DOCS: https://nightly.spacy.io/api/cli#debug-model
""" """
if use_gpu >= 0: setup_gpu(use_gpu)
msg.info("Using GPU")
require_gpu(use_gpu)
else:
msg.info("Using CPU")
layers = string_to_list(layers, intify=True) layers = string_to_list(layers, intify=True)
print_settings = { print_settings = {
"dimensions": dimensions, "dimensions": dimensions,
@ -57,14 +57,18 @@ def debug_model_cli(
} }
config_overrides = parse_config_overrides(ctx.args) config_overrides = parse_config_overrides(ctx.args)
with show_validation_error(config_path): with show_validation_error(config_path):
config = util.load_config( raw_config = util.load_config(
config_path, overrides=config_overrides, interpolate=True config_path, overrides=config_overrides, interpolate=False
) )
allocator = config["training"]["gpu_allocator"] config = raw_config.interpolate()
if use_gpu >= 0 and allocator: allocator = config["training"]["gpu_allocator"]
set_gpu_allocator(allocator) if use_gpu >= 0 and allocator:
nlp, config = util.load_model_from_config(config) set_gpu_allocator(allocator)
seed = config["training"]["seed"] with show_validation_error(config_path):
nlp = util.load_model_from_config(raw_config)
config = nlp.config.interpolate()
T = registry.resolve(config["training"], schema=ConfigSchemaTraining)
seed = T["seed"]
if seed is not None: if seed is not None:
msg.info(f"Fixing random seed: {seed}") msg.info(f"Fixing random seed: {seed}")
fix_random_seed(seed) fix_random_seed(seed)
@ -75,11 +79,16 @@ def debug_model_cli(
exits=1, exits=1,
) )
model = pipe.model model = pipe.model
debug_model(config, nlp, model, print_settings=print_settings) debug_model(config, T, nlp, model, print_settings=print_settings)
def debug_model( def debug_model(
config, nlp, model: Model, *, print_settings: Optional[Dict[str, Any]] = None config,
resolved_train_config,
nlp,
model: Model,
*,
print_settings: Optional[Dict[str, Any]] = None,
): ):
if not isinstance(model, Model): if not isinstance(model, Model):
msg.fail( msg.fail(
@ -100,15 +109,18 @@ def debug_model(
# The output vector might differ from the official type of the output layer # The output vector might differ from the official type of the output layer
with data_validation(False): with data_validation(False):
try: try:
train_corpus = dot_to_object(config, config["training"]["train_corpus"]) dot_names = [resolved_train_config["train_corpus"]]
nlp.begin_training(lambda: train_corpus(nlp)) with show_validation_error():
(train_corpus,) = resolve_dot_names(config, dot_names)
nlp.initialize(lambda: train_corpus(nlp))
msg.info("Initialized the model with the training corpus.") msg.info("Initialized the model with the training corpus.")
except ValueError: except ValueError:
try: try:
_set_output_dim(nO=7, model=model) _set_output_dim(nO=7, model=model)
nlp.begin_training(lambda: [Example.from_dict(x, {}) for x in X]) with show_validation_error():
nlp.initialize(lambda: [Example.from_dict(x, {}) for x in X])
msg.info("Initialized the model with dummy data.") msg.info("Initialized the model with dummy data.")
except: except Exception:
msg.fail( msg.fail(
"Could not initialize the model: you'll have to provide a valid train_corpus argument in the config file.", "Could not initialize the model: you'll have to provide a valid train_corpus argument in the config file.",
exits=1, exits=1,

View File

@ -3,11 +3,11 @@ from wasabi import Printer
from pathlib import Path from pathlib import Path
import re import re
import srsly import srsly
from thinc.api import require_gpu, fix_random_seed from thinc.api import fix_random_seed
from ..training import Corpus from ..training import Corpus
from ..tokens import Doc from ..tokens import Doc
from ._util import app, Arg, Opt from ._util import app, Arg, Opt, setup_gpu, import_code
from ..scorer import Scorer from ..scorer import Scorer
from .. import util from .. import util
from .. import displacy from .. import displacy
@ -19,6 +19,7 @@ def evaluate_cli(
model: str = Arg(..., help="Model name or path"), model: str = Arg(..., help="Model name or path"),
data_path: Path = Arg(..., help="Location of binary evaluation data in .spacy format", exists=True), data_path: Path = Arg(..., help="Location of binary evaluation data in .spacy format", exists=True),
output: Optional[Path] = Opt(None, "--output", "-o", help="Output JSON file for metrics", dir_okay=False), output: Optional[Path] = Opt(None, "--output", "-o", help="Output JSON file for metrics", dir_okay=False),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"), use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
gold_preproc: bool = Opt(False, "--gold-preproc", "-G", help="Use gold preprocessing"), gold_preproc: bool = Opt(False, "--gold-preproc", "-G", help="Use gold preprocessing"),
displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False), displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False),
@ -37,6 +38,7 @@ def evaluate_cli(
DOCS: https://nightly.spacy.io/api/cli#evaluate DOCS: https://nightly.spacy.io/api/cli#evaluate
""" """
import_code(code_path)
evaluate( evaluate(
model, model,
data_path, data_path,
@ -61,8 +63,7 @@ def evaluate(
) -> Scorer: ) -> Scorer:
msg = Printer(no_print=silent, pretty=not silent) msg = Printer(no_print=silent, pretty=not silent)
fix_random_seed() fix_random_seed()
if use_gpu >= 0: setup_gpu(use_gpu)
require_gpu(use_gpu)
data_path = util.ensure_path(data_path) data_path = util.ensure_path(data_path)
output_path = util.ensure_path(output) output_path = util.ensure_path(output)
displacy_path = util.ensure_path(displacy_path) displacy_path = util.ensure_path(displacy_path)

View File

@ -88,10 +88,10 @@ def fill_config(
msg = Printer(no_print=no_print) msg = Printer(no_print=no_print)
with show_validation_error(hint_fill=False): with show_validation_error(hint_fill=False):
config = util.load_config(base_path) config = util.load_config(base_path)
nlp, _ = util.load_model_from_config(config, auto_fill=True, validate=False) nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
# Load a second time with validation to be extra sure that the produced # Load a second time with validation to be extra sure that the produced
# config result is a valid config # config result is a valid config
nlp, _ = util.load_model_from_config(nlp.config) nlp = util.load_model_from_config(nlp.config)
filled = nlp.config filled = nlp.config
if pretraining: if pretraining:
validate_config_for_pretrain(filled, msg) validate_config_for_pretrain(filled, msg)
@ -169,7 +169,7 @@ def init_config(
msg.text(f"- {label}: {value}") msg.text(f"- {label}: {value}")
with show_validation_error(hint_fill=False): with show_validation_error(hint_fill=False):
config = util.load_config_from_str(base_template) config = util.load_config_from_str(base_template)
nlp, _ = util.load_model_from_config(config, auto_fill=True) nlp = util.load_model_from_config(config, auto_fill=True)
config = nlp.config config = nlp.config
if pretraining: if pretraining:
validate_config_for_pretrain(config, msg) validate_config_for_pretrain(config, msg)

View File

@ -1,360 +0,0 @@
from typing import Optional, List, Dict, Any, Union, IO
import math
from tqdm import tqdm
import numpy
from ast import literal_eval
from pathlib import Path
from preshed.counter import PreshCounter
import tarfile
import gzip
import zipfile
import srsly
import warnings
from wasabi import msg, Printer
import typer
from ._util import app, init_cli, Arg, Opt
from ..vectors import Vectors
from ..errors import Errors, Warnings
from ..language import Language
from ..util import ensure_path, get_lang_class, load_model, OOV_RANK
try:
import ftfy
except ImportError:
ftfy = None
DEFAULT_OOV_PROB = -20
@init_cli.command("vocab")
@app.command(
"init-model",
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
hidden=True, # hide this from main CLI help but still allow it to work with warning
)
def init_model_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
lang: str = Arg(..., help="Pipeline language"),
output_dir: Path = Arg(..., help="Pipeline output directory"),
freqs_loc: Optional[Path] = Arg(None, help="Location of words frequencies file", exists=True),
clusters_loc: Optional[Path] = Opt(None, "--clusters-loc", "-c", help="Optional location of brown clusters data", exists=True),
jsonl_loc: Optional[Path] = Opt(None, "--jsonl-loc", "-j", help="Location of JSONL-formatted attributes file", exists=True),
vectors_loc: Optional[Path] = Opt(None, "--vectors-loc", "-v", help="Optional vectors file in Word2Vec format", exists=True),
prune_vectors: int = Opt(-1, "--prune-vectors", "-V", help="Optional number of vectors to prune to"),
truncate_vectors: int = Opt(0, "--truncate-vectors", "-t", help="Optional number of vectors to truncate to when reading in vectors file"),
vectors_name: Optional[str] = Opt(None, "--vectors-name", "-vn", help="Optional name for the word vectors, e.g. en_core_web_lg.vectors"),
model_name: Optional[str] = Opt(None, "--meta-name", "-mn", help="Optional name of the package for the pipeline meta"),
base_model: Optional[str] = Opt(None, "--base", "-b", help="Name of or path to base pipeline to start with (mostly relevant for pipelines with custom tokenizers)")
# fmt: on
):
"""
Create a new blank pipeline directory with vocab and vectors from raw data.
If vectors are provided in Word2Vec format, they can be either a .txt or
zipped as a .zip or .tar.gz.
DOCS: https://nightly.spacy.io/api/cli#init-vocab
"""
if ctx.command.name == "init-model":
msg.warn(
"The init-model command is now called 'init vocab'. You can run "
"'python -m spacy init --help' for an overview of the other "
"available initialization commands."
)
init_model(
lang,
output_dir,
freqs_loc=freqs_loc,
clusters_loc=clusters_loc,
jsonl_loc=jsonl_loc,
vectors_loc=vectors_loc,
prune_vectors=prune_vectors,
truncate_vectors=truncate_vectors,
vectors_name=vectors_name,
model_name=model_name,
base_model=base_model,
silent=False,
)
def init_model(
lang: str,
output_dir: Path,
freqs_loc: Optional[Path] = None,
clusters_loc: Optional[Path] = None,
jsonl_loc: Optional[Path] = None,
vectors_loc: Optional[Path] = None,
prune_vectors: int = -1,
truncate_vectors: int = 0,
vectors_name: Optional[str] = None,
model_name: Optional[str] = None,
base_model: Optional[str] = None,
silent: bool = True,
) -> Language:
msg = Printer(no_print=silent, pretty=not silent)
if jsonl_loc is not None:
if freqs_loc is not None or clusters_loc is not None:
settings = ["-j"]
if freqs_loc:
settings.append("-f")
if clusters_loc:
settings.append("-c")
msg.warn(
"Incompatible arguments",
"The -f and -c arguments are deprecated, and not compatible "
"with the -j argument, which should specify the same "
"information. Either merge the frequencies and clusters data "
"into the JSONL-formatted file (recommended), or use only the "
"-f and -c files, without the other lexical attributes.",
)
jsonl_loc = ensure_path(jsonl_loc)
lex_attrs = srsly.read_jsonl(jsonl_loc)
else:
clusters_loc = ensure_path(clusters_loc)
freqs_loc = ensure_path(freqs_loc)
if freqs_loc is not None and not freqs_loc.exists():
msg.fail("Can't find words frequencies file", freqs_loc, exits=1)
lex_attrs = read_attrs_from_deprecated(msg, freqs_loc, clusters_loc)
with msg.loading("Creating blank pipeline..."):
nlp = create_model(lang, lex_attrs, name=model_name, base_model=base_model)
msg.good("Successfully created blank pipeline")
if vectors_loc is not None:
add_vectors(
msg, nlp, vectors_loc, truncate_vectors, prune_vectors, vectors_name
)
vec_added = len(nlp.vocab.vectors)
lex_added = len(nlp.vocab)
msg.good(
"Sucessfully compiled vocab", f"{lex_added} entries, {vec_added} vectors",
)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
return nlp
def open_file(loc: Union[str, Path]) -> IO:
"""Handle .gz, .tar.gz or unzipped files"""
loc = ensure_path(loc)
if tarfile.is_tarfile(str(loc)):
return tarfile.open(str(loc), "r:gz")
elif loc.parts[-1].endswith("gz"):
return (line.decode("utf8") for line in gzip.open(str(loc), "r"))
elif loc.parts[-1].endswith("zip"):
zip_file = zipfile.ZipFile(str(loc))
names = zip_file.namelist()
file_ = zip_file.open(names[0])
return (line.decode("utf8") for line in file_)
else:
return loc.open("r", encoding="utf8")
def read_attrs_from_deprecated(
msg: Printer, freqs_loc: Optional[Path], clusters_loc: Optional[Path]
) -> List[Dict[str, Any]]:
if freqs_loc is not None:
with msg.loading("Counting frequencies..."):
probs, _ = read_freqs(freqs_loc)
msg.good("Counted frequencies")
else:
probs, _ = ({}, DEFAULT_OOV_PROB) # noqa: F841
if clusters_loc:
with msg.loading("Reading clusters..."):
clusters = read_clusters(clusters_loc)
msg.good("Read clusters")
else:
clusters = {}
lex_attrs = []
sorted_probs = sorted(probs.items(), key=lambda item: item[1], reverse=True)
if len(sorted_probs):
for i, (word, prob) in tqdm(enumerate(sorted_probs)):
attrs = {"orth": word, "id": i, "prob": prob}
# Decode as a little-endian string, so that we can do & 15 to get
# the first 4 bits. See _parse_features.pyx
if word in clusters:
attrs["cluster"] = int(clusters[word][::-1], 2)
else:
attrs["cluster"] = 0
lex_attrs.append(attrs)
return lex_attrs
def create_model(
lang: str,
lex_attrs: List[Dict[str, Any]],
name: Optional[str] = None,
base_model: Optional[Union[str, Path]] = None,
) -> Language:
if base_model:
nlp = load_model(base_model)
# keep the tokenizer but remove any existing pipeline components due to
# potentially conflicting vectors
for pipe in nlp.pipe_names:
nlp.remove_pipe(pipe)
else:
lang_class = get_lang_class(lang)
nlp = lang_class()
for lexeme in nlp.vocab:
lexeme.rank = OOV_RANK
for attrs in lex_attrs:
if "settings" in attrs:
continue
lexeme = nlp.vocab[attrs["orth"]]
lexeme.set_attrs(**attrs)
if len(nlp.vocab):
oov_prob = min(lex.prob for lex in nlp.vocab) - 1
else:
oov_prob = DEFAULT_OOV_PROB
nlp.vocab.cfg.update({"oov_prob": oov_prob})
if name:
nlp.meta["name"] = name
return nlp
def add_vectors(
msg: Printer,
nlp: Language,
vectors_loc: Optional[Path],
truncate_vectors: int,
prune_vectors: int,
name: Optional[str] = None,
) -> None:
vectors_loc = ensure_path(vectors_loc)
if vectors_loc and vectors_loc.parts[-1].endswith(".npz"):
nlp.vocab.vectors = Vectors(data=numpy.load(vectors_loc.open("rb")))
for lex in nlp.vocab:
if lex.rank and lex.rank != OOV_RANK:
nlp.vocab.vectors.add(lex.orth, row=lex.rank)
else:
if vectors_loc:
with msg.loading(f"Reading vectors from {vectors_loc}"):
vectors_data, vector_keys = read_vectors(
msg, vectors_loc, truncate_vectors
)
msg.good(f"Loaded vectors from {vectors_loc}")
else:
vectors_data, vector_keys = (None, None)
if vector_keys is not None:
for word in vector_keys:
if word not in nlp.vocab:
nlp.vocab[word]
if vectors_data is not None:
nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys)
if name is None:
# TODO: Is this correct? Does this matter?
nlp.vocab.vectors.name = f"{nlp.meta['lang']}_{nlp.meta['name']}.vectors"
else:
nlp.vocab.vectors.name = name
nlp.meta["vectors"]["name"] = nlp.vocab.vectors.name
if prune_vectors >= 1:
nlp.vocab.prune_vectors(prune_vectors)
def read_vectors(msg: Printer, vectors_loc: Path, truncate_vectors: int):
f = open_file(vectors_loc)
f = ensure_shape(f)
shape = tuple(int(size) for size in next(f).split())
if truncate_vectors >= 1:
shape = (truncate_vectors, shape[1])
vectors_data = numpy.zeros(shape=shape, dtype="f")
vectors_keys = []
for i, line in enumerate(tqdm(f)):
line = line.rstrip()
pieces = line.rsplit(" ", vectors_data.shape[1])
word = pieces.pop(0)
if len(pieces) != vectors_data.shape[1]:
msg.fail(Errors.E094.format(line_num=i, loc=vectors_loc), exits=1)
vectors_data[i] = numpy.asarray(pieces, dtype="f")
vectors_keys.append(word)
if i == truncate_vectors - 1:
break
return vectors_data, vectors_keys
def ensure_shape(lines):
"""Ensure that the first line of the data is the vectors shape.
If it's not, we read in the data and output the shape as the first result,
so that the reader doesn't have to deal with the problem.
"""
first_line = next(lines)
try:
shape = tuple(int(size) for size in first_line.split())
except ValueError:
shape = None
if shape is not None:
# All good, give the data
yield first_line
yield from lines
else:
# Figure out the shape, make it the first value, and then give the
# rest of the data.
width = len(first_line.split()) - 1
captured = [first_line] + list(lines)
length = len(captured)
yield f"{length} {width}"
yield from captured
def read_freqs(
freqs_loc: Path, max_length: int = 100, min_doc_freq: int = 5, min_freq: int = 50
):
counts = PreshCounter()
total = 0
with freqs_loc.open() as f:
for i, line in enumerate(f):
freq, doc_freq, key = line.rstrip().split("\t", 2)
freq = int(freq)
counts.inc(i + 1, freq)
total += freq
counts.smooth()
log_total = math.log(total)
probs = {}
with freqs_loc.open() as f:
for line in tqdm(f):
freq, doc_freq, key = line.rstrip().split("\t", 2)
doc_freq = int(doc_freq)
freq = int(freq)
if doc_freq >= min_doc_freq and freq >= min_freq and len(key) < max_length:
try:
word = literal_eval(key)
except SyntaxError:
# Take odd strings literally.
word = literal_eval(f"'{key}'")
smooth_count = counts.smoother(int(freq))
probs[word] = math.log(smooth_count) - log_total
oov_prob = math.log(counts.smoother(0)) - log_total
return probs, oov_prob
def read_clusters(clusters_loc: Path) -> dict:
clusters = {}
if ftfy is None:
warnings.warn(Warnings.W004)
with clusters_loc.open() as f:
for line in tqdm(f):
try:
cluster, word, freq = line.split()
if ftfy is not None:
word = ftfy.fix_text(word)
except ValueError:
continue
# If the clusterer has only seen the word a few times, its
# cluster is unreliable.
if int(freq) >= 3:
clusters[word] = cluster
else:
clusters[word] = "0"
# Expand clusters with re-casing
for word, cluster in list(clusters.items()):
if word.lower() not in clusters:
clusters[word.lower()] = cluster
if word.title() not in clusters:
clusters[word.title()] = cluster
if word.upper() not in clusters:
clusters[word.upper()] = cluster
return clusters

117
spacy/cli/init_pipeline.py Normal file
View File

@ -0,0 +1,117 @@
from typing import Optional
import logging
from pathlib import Path
from wasabi import msg
import typer
import srsly
from .. import util
from ..training.initialize import init_nlp, convert_vectors
from ..language import Language
from ._util import init_cli, Arg, Opt, parse_config_overrides, show_validation_error
from ._util import import_code, setup_gpu
@init_cli.command("vectors")
def init_vectors_cli(
# fmt: off
lang: str = Arg(..., help="The language of the nlp object to create"),
vectors_loc: Path = Arg(..., help="Vectors file in Word2Vec format", exists=True),
output_dir: Path = Arg(..., help="Pipeline output directory"),
prune: int = Opt(-1, "--prune", "-p", help="Optional number of vectors to prune to"),
truncate: int = Opt(0, "--truncate", "-t", help="Optional number of vectors to truncate to when reading in vectors file"),
name: Optional[str] = Opt(None, "--name", "-n", help="Optional name for the word vectors, e.g. en_core_web_lg.vectors"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
jsonl_loc: Optional[Path] = Opt(None, "--lexemes-jsonl", "-j", help="Location of JSONL-formatted attributes file", hidden=True),
# fmt: on
):
"""Convert word vectors for use with spaCy. Will export an nlp object that
you can use in the [initialize] block of your config to initialize
a model with vectors.
"""
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
msg.info(f"Creating blank nlp object for language '{lang}'")
nlp = util.get_lang_class(lang)()
if jsonl_loc is not None:
update_lexemes(nlp, jsonl_loc)
convert_vectors(nlp, vectors_loc, truncate=truncate, prune=prune, name=name)
msg.good(f"Successfully converted {len(nlp.vocab.vectors)} vectors")
nlp.to_disk(output_dir)
msg.good(
"Saved nlp object with vectors to output directory. You can now use the "
"path to it in your config as the 'vectors' setting in [initialize.vocab].",
output_dir.resolve(),
)
def update_lexemes(nlp: Language, jsonl_loc: Path) -> None:
# Mostly used for backwards-compatibility and may be removed in the future
lex_attrs = srsly.read_jsonl(jsonl_loc)
for attrs in lex_attrs:
if "settings" in attrs:
continue
lexeme = nlp.vocab[attrs["orth"]]
lexeme.set_attrs(**attrs)
@init_cli.command(
"nlp",
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
hidden=True,
)
def init_pipeline_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True),
output_path: Path = Arg(..., help="Output directory for the prepared data"),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
# fmt: on
):
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
overrides = parse_config_overrides(ctx.args)
import_code(code_path)
setup_gpu(use_gpu)
with show_validation_error(config_path):
config = util.load_config(config_path, overrides=overrides)
with show_validation_error(hint_fill=False):
nlp = init_nlp(config, use_gpu=use_gpu)
nlp.to_disk(output_path)
msg.good(f"Saved initialized pipeline to {output_path}")
@init_cli.command(
"labels",
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
)
def init_labels_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True),
output_path: Path = Arg(..., help="Output directory for the labels"),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
# fmt: on
):
"""Generate JSON files for the labels in the data. This helps speed up the
training process, since spaCy won't have to preprocess the data to
extract the labels."""
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
if not output_path.exists():
output_path.mkdir()
overrides = parse_config_overrides(ctx.args)
import_code(code_path)
setup_gpu(use_gpu)
with show_validation_error(config_path):
config = util.load_config(config_path, overrides=overrides)
with show_validation_error(hint_fill=False):
nlp = init_nlp(config, use_gpu=use_gpu)
for name, component in nlp.pipeline:
if getattr(component, "label_data", None) is not None:
output_file = output_path / f"{name}.json"
srsly.write_json(output_file, component.label_data)
msg.good(f"Saving {name} labels to {output_file}")
else:
msg.info(f"No labels found for {name}")

View File

@ -1,25 +1,13 @@
from typing import Optional from typing import Optional
import numpy
import time
import re
from collections import Counter
from pathlib import Path from pathlib import Path
from thinc.api import require_gpu, set_gpu_allocator
from thinc.api import set_dropout_rate, to_categorical, fix_random_seed
from thinc.api import Config, CosineDistance, L2Distance
from wasabi import msg from wasabi import msg
import srsly
from functools import partial
import typer import typer
import re
from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error
from ._util import import_code from ._util import import_code, setup_gpu
from ..ml.models.multi_task import build_cloze_multi_task_model from ..training.pretrain import pretrain
from ..ml.models.multi_task import build_cloze_characters_multi_task_model from ..util import load_config
from ..tokens import Doc
from ..attrs import ID
from .. import util
from ..util import dot_to_object
@app.command( @app.command(
@ -61,25 +49,22 @@ def pretrain_cli(
config_overrides = parse_config_overrides(ctx.args) config_overrides = parse_config_overrides(ctx.args)
import_code(code_path) import_code(code_path)
verify_cli_args(config_path, output_dir, resume_path, epoch_resume) verify_cli_args(config_path, output_dir, resume_path, epoch_resume)
if use_gpu >= 0: setup_gpu(use_gpu)
msg.info("Using GPU")
require_gpu(use_gpu)
else:
msg.info("Using CPU")
msg.info(f"Loading config from: {config_path}") msg.info(f"Loading config from: {config_path}")
with show_validation_error(config_path): with show_validation_error(config_path):
config = util.load_config( raw_config = load_config(
config_path, overrides=config_overrides, interpolate=True config_path, overrides=config_overrides, interpolate=False
) )
config = raw_config.interpolate()
if not config.get("pretraining"): if not config.get("pretraining"):
# TODO: What's the solution here? How do we handle optional blocks? # TODO: What's the solution here? How do we handle optional blocks?
msg.fail("The [pretraining] block in your config is empty", exits=1) msg.fail("The [pretraining] block in your config is empty", exits=1)
if not output_dir.exists(): if not output_dir.exists():
output_dir.mkdir() output_dir.mkdir()
msg.good(f"Created output directory: {output_dir}") msg.good(f"Created output directory: {output_dir}")
# Save non-interpolated config
config.to_disk(output_dir / "config.cfg") raw_config.to_disk(output_dir / "config.cfg")
msg.good("Saved config file in the output directory") msg.good("Saved config file in the output directory")
pretrain( pretrain(
@ -88,251 +73,11 @@ def pretrain_cli(
resume_path=resume_path, resume_path=resume_path,
epoch_resume=epoch_resume, epoch_resume=epoch_resume,
use_gpu=use_gpu, use_gpu=use_gpu,
silent=False,
) )
def pretrain(
config: Config,
output_dir: Path,
resume_path: Optional[Path] = None,
epoch_resume: Optional[int] = None,
use_gpu: int = -1,
):
if config["training"]["seed"] is not None:
fix_random_seed(config["training"]["seed"])
allocator = config["training"]["gpu_allocator"]
if use_gpu >= 0 and allocator:
set_gpu_allocator(allocator)
nlp, config = util.load_model_from_config(config)
P_cfg = config["pretraining"]
corpus = dot_to_object(config, P_cfg["corpus"])
batcher = P_cfg["batcher"]
model = create_pretraining_model(nlp, config["pretraining"])
optimizer = config["pretraining"]["optimizer"]
# Load in pretrained weights to resume from
if resume_path is not None:
_resume_model(model, resume_path, epoch_resume)
else:
# Without '--resume-path' the '--epoch-resume' argument is ignored
epoch_resume = 0
tracker = ProgressTracker(frequency=10000)
msg.divider(f"Pre-training tok2vec layer - starting at epoch {epoch_resume}")
row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings)
def _save_model(epoch, is_temp=False):
is_temp_str = ".temp" if is_temp else ""
with model.use_params(optimizer.averages):
with (output_dir / f"model{epoch}{is_temp_str}.bin").open("wb") as file_:
file_.write(model.get_ref("tok2vec").to_bytes())
log = {
"nr_word": tracker.nr_word,
"loss": tracker.loss,
"epoch_loss": tracker.epoch_loss,
"epoch": epoch,
}
with (output_dir / "log.jsonl").open("a") as file_:
file_.write(srsly.json_dumps(log) + "\n")
objective = create_objective(P_cfg["objective"])
# TODO: I think we probably want this to look more like the
# 'create_train_batches' function?
for epoch in range(epoch_resume, P_cfg["max_epochs"]):
for batch_id, batch in enumerate(batcher(corpus(nlp))):
docs = ensure_docs(batch)
loss = make_update(model, docs, optimizer, objective)
progress = tracker.update(epoch, loss, docs)
if progress:
msg.row(progress, **row_settings)
if P_cfg["n_save_every"] and (batch_id % P_cfg["n_save_every"] == 0):
_save_model(epoch, is_temp=True)
_save_model(epoch)
tracker.epoch_loss = 0.0
msg.good("Successfully finished pretrain") msg.good("Successfully finished pretrain")
def ensure_docs(examples_or_docs):
docs = []
for eg_or_doc in examples_or_docs:
if isinstance(eg_or_doc, Doc):
docs.append(eg_or_doc)
else:
docs.append(eg_or_doc.reference)
return docs
def _resume_model(model, resume_path, epoch_resume):
msg.info(f"Resume training tok2vec from: {resume_path}")
with resume_path.open("rb") as file_:
weights_data = file_.read()
model.get_ref("tok2vec").from_bytes(weights_data)
# Parse the epoch number from the given weight file
model_name = re.search(r"model\d+\.bin", str(resume_path))
if model_name:
# Default weight file name so read epoch_start from it by cutting off 'model' and '.bin'
epoch_resume = int(model_name.group(0)[5:][:-4]) + 1
msg.info(f"Resuming from epoch: {epoch_resume}")
else:
msg.info(f"Resuming from epoch: {epoch_resume}")
def make_update(model, docs, optimizer, objective_func):
"""Perform an update over a single batch of documents.
docs (iterable): A batch of `Doc` objects.
optimizer (callable): An optimizer.
RETURNS loss: A float for the loss.
"""
predictions, backprop = model.begin_update(docs)
loss, gradients = objective_func(model.ops, docs, predictions)
backprop(gradients)
model.finish_update(optimizer)
# Don't want to return a cupy object here
# The gradients are modified in-place by the BERT MLM,
# so we get an accurate loss
return float(loss)
def create_objective(config):
"""Create the objective for pretraining.
We'd like to replace this with a registry function but it's tricky because
we're also making a model choice based on this. For now we hard-code support
for two types (characters, vectors). For characters you can specify
n_characters, for vectors you can specify the loss.
Bleh.
"""
objective_type = config["type"]
if objective_type == "characters":
return partial(get_characters_loss, nr_char=config["n_characters"])
elif objective_type == "vectors":
if config["loss"] == "cosine":
return partial(
get_vectors_loss,
distance=CosineDistance(normalize=True, ignore_zeros=True),
)
elif config["loss"] == "L2":
return partial(
get_vectors_loss, distance=L2Distance(normalize=True, ignore_zeros=True)
)
else:
raise ValueError("Unexpected loss type", config["loss"])
else:
raise ValueError("Unexpected objective_type", objective_type)
def get_vectors_loss(ops, docs, prediction, distance):
"""Compute a loss based on a distance between the documents' vectors and
the prediction.
"""
# The simplest way to implement this would be to vstack the
# token.vector values, but that's a bit inefficient, especially on GPU.
# Instead we fetch the index into the vectors table for each of our tokens,
# and look them up all at once. This prevents data copying.
ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
target = docs[0].vocab.vectors.data[ids]
d_target, loss = distance(prediction, target)
return loss, d_target
def get_characters_loss(ops, docs, prediction, nr_char):
"""Compute a loss based on a number of characters predicted from the docs."""
target_ids = numpy.vstack([doc.to_utf8_array(nr_char=nr_char) for doc in docs])
target_ids = target_ids.reshape((-1,))
target = ops.asarray(to_categorical(target_ids, n_classes=256), dtype="f")
target = target.reshape((-1, 256 * nr_char))
diff = prediction - target
loss = (diff ** 2).sum()
d_target = diff / float(prediction.shape[0])
return loss, d_target
def create_pretraining_model(nlp, pretrain_config):
"""Define a network for the pretraining. We simply add an output layer onto
the tok2vec input model. The tok2vec input model needs to be a model that
takes a batch of Doc objects (as a list), and returns a list of arrays.
Each array in the output needs to have one row per token in the doc.
The actual tok2vec layer is stored as a reference, and only this bit will be
serialized to file and read back in when calling the 'train' command.
"""
component = nlp.get_pipe(pretrain_config["component"])
if pretrain_config.get("layer"):
tok2vec = component.model.get_ref(pretrain_config["layer"])
else:
tok2vec = component.model
# TODO
maxout_pieces = 3
hidden_size = 300
if pretrain_config["objective"]["type"] == "vectors":
model = build_cloze_multi_task_model(
nlp.vocab, tok2vec, hidden_size=hidden_size, maxout_pieces=maxout_pieces
)
elif pretrain_config["objective"]["type"] == "characters":
model = build_cloze_characters_multi_task_model(
nlp.vocab,
tok2vec,
hidden_size=hidden_size,
maxout_pieces=maxout_pieces,
nr_char=pretrain_config["objective"]["n_characters"],
)
model.initialize(X=[nlp.make_doc("Give it a doc to infer shapes")])
set_dropout_rate(model, pretrain_config["dropout"])
return model
class ProgressTracker:
def __init__(self, frequency=1000000):
self.loss = 0.0
self.prev_loss = 0.0
self.nr_word = 0
self.words_per_epoch = Counter()
self.frequency = frequency
self.last_time = time.time()
self.last_update = 0
self.epoch_loss = 0.0
def update(self, epoch, loss, docs):
self.loss += loss
self.epoch_loss += loss
words_in_batch = sum(len(doc) for doc in docs)
self.words_per_epoch[epoch] += words_in_batch
self.nr_word += words_in_batch
words_since_update = self.nr_word - self.last_update
if words_since_update >= self.frequency:
wps = words_since_update / (time.time() - self.last_time)
self.last_update = self.nr_word
self.last_time = time.time()
loss_per_word = self.loss - self.prev_loss
status = (
epoch,
self.nr_word,
_smart_round(self.loss, width=10),
_smart_round(loss_per_word, width=6),
int(wps),
)
self.prev_loss = float(self.loss)
return status
else:
return None
def _smart_round(figure, width=10, max_decimal=4):
"""Round large numbers as integers, smaller numbers as decimals."""
n_digits = len(str(int(figure)))
n_decimal = width - (n_digits + 1)
if n_decimal <= 1:
return str(int(figure))
else:
n_decimal = min(n_decimal, max_decimal)
format_str = "%." + str(n_decimal) + "f"
return format_str % figure
def verify_cli_args(config_path, output_dir, resume_path, epoch_resume): def verify_cli_args(config_path, output_dir, resume_path, epoch_resume):
if not config_path or not config_path.exists(): if not config_path or not config_path.exists():
msg.fail("Config file not found", config_path, exits=1) msg.fail("Config file not found", config_path, exits=1)

View File

@ -114,6 +114,6 @@ def project_document(
content = f"{before}{content}{after}" content = f"{before}{content}{after}"
else: else:
msg.warn("Replacing existing file") msg.warn("Replacing existing file")
with output_file.open("w") as f: with output_file.open("w", encoding="utf8") as f:
f.write(content) f.write(content)
msg.good("Saved project documentation", output_file) msg.good("Saved project documentation", output_file)

View File

@ -134,7 +134,7 @@ def update_dvc_config(
def run_dvc_commands( def run_dvc_commands(
commands: Iterable[str] = SimpleFrozenList(), flags: Dict[str, bool] = {}, commands: Iterable[str] = SimpleFrozenList(), flags: Dict[str, bool] = {}
) -> None: ) -> None:
"""Run a sequence of DVC commands in a subprocess, in order. """Run a sequence of DVC commands in a subprocess, in order.

View File

@ -4,8 +4,8 @@ can help generate the best possible configuration, given a user's requirements.
{%- set use_transformer = (transformer_data and hardware != "cpu") -%} {%- set use_transformer = (transformer_data and hardware != "cpu") -%}
{%- set transformer = transformer_data[optimize] if use_transformer else {} -%} {%- set transformer = transformer_data[optimize] if use_transformer else {} -%}
[paths] [paths]
train = "" train = null
dev = "" dev = null
[system] [system]
{% if use_transformer -%} {% if use_transformer -%}
@ -277,11 +277,6 @@ path = ${paths.dev}
max_length = 0 max_length = 0
[training] [training]
{% if use_transformer or optimize == "efficiency" or not word_vectors -%}
vectors = null
{% else -%}
vectors = "{{ word_vectors }}"
{% endif -%}
{% if use_transformer -%} {% if use_transformer -%}
accumulate_gradient = {{ transformer["size_factor"] }} accumulate_gradient = {{ transformer["size_factor"] }}
{% endif -%} {% endif -%}
@ -317,3 +312,10 @@ start = 100
stop = 1000 stop = 1000
compound = 1.001 compound = 1.001
{% endif %} {% endif %}
[initialize]
{% if use_transformer or optimize == "efficiency" or not word_vectors -%}
vectors = null
{% else -%}
vectors = "{{ word_vectors }}"
{% endif -%}

View File

@ -1,23 +1,14 @@
from typing import Optional, Dict, Any, Tuple, Union, Callable, List from typing import Optional
from timeit import default_timer as timer
import srsly
import tqdm
from pathlib import Path from pathlib import Path
from wasabi import msg from wasabi import msg
import thinc
import thinc.schedules
from thinc.api import Config, Optimizer, require_gpu, fix_random_seed, set_gpu_allocator
import random
import typer import typer
import logging import logging
from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error
from ._util import import_code, get_sourced_components from ._util import import_code, setup_gpu
from ..language import Language from ..training.loop import train
from ..training.initialize import init_nlp
from .. import util from .. import util
from ..training.example import Example
from ..errors import Errors
from ..util import dot_to_object
@app.command( @app.command(
@ -30,8 +21,7 @@ def train_cli(
output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store trained pipeline in"), output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store trained pipeline in"),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"), code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"), verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"), use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
resume: bool = Opt(False, "--resume", "-R", help="Resume training"),
# fmt: on # fmt: on
): ):
""" """
@ -48,375 +38,19 @@ def train_cli(
DOCS: https://nightly.spacy.io/api/cli#train DOCS: https://nightly.spacy.io/api/cli#train
""" """
util.logger.setLevel(logging.DEBUG if verbose else logging.ERROR) util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
verify_cli_args(config_path, output_path) verify_cli_args(config_path, output_path)
overrides = parse_config_overrides(ctx.args) overrides = parse_config_overrides(ctx.args)
import_code(code_path) import_code(code_path)
train( setup_gpu(use_gpu)
config_path,
output_path=output_path,
config_overrides=overrides,
use_gpu=use_gpu,
resume_training=resume,
)
def train(
config_path: Path,
output_path: Optional[Path] = None,
config_overrides: Dict[str, Any] = {},
use_gpu: int = -1,
resume_training: bool = False,
) -> None:
if use_gpu >= 0:
msg.info(f"Using GPU: {use_gpu}")
require_gpu(use_gpu)
else:
msg.info("Using CPU")
msg.info(f"Loading config and nlp from: {config_path}")
with show_validation_error(config_path): with show_validation_error(config_path):
config = util.load_config( config = util.load_config(config_path, overrides=overrides, interpolate=False)
config_path, overrides=config_overrides, interpolate=True msg.divider("Initializing pipeline")
) with show_validation_error(config_path, hint_fill=False):
if config["training"]["seed"] is not None: nlp = init_nlp(config, use_gpu=use_gpu)
fix_random_seed(config["training"]["seed"]) msg.good("Initialized pipeline")
allocator = config["training"]["gpu_allocator"] msg.divider("Training pipeline")
if use_gpu >= 0 and allocator: train(nlp, output_path, use_gpu=use_gpu, silent=False)
set_gpu_allocator(allocator)
# Use original config here before it's resolved to functions
sourced_components = get_sourced_components(config)
with show_validation_error(config_path):
nlp, config = util.load_model_from_config(config)
util.load_vocab_data_into_model(nlp, lookups=config["training"]["lookups"])
if config["training"]["vectors"] is not None:
util.load_vectors_into_model(nlp, config["training"]["vectors"])
raw_text, tag_map, morph_rules, weights_data = load_from_paths(config)
T_cfg = config["training"]
optimizer = T_cfg["optimizer"]
train_corpus = dot_to_object(config, T_cfg["train_corpus"])
dev_corpus = dot_to_object(config, T_cfg["dev_corpus"])
batcher = T_cfg["batcher"]
train_logger = T_cfg["logger"]
before_to_disk = create_before_to_disk_callback(T_cfg["before_to_disk"])
# Components that shouldn't be updated during training
frozen_components = T_cfg["frozen_components"]
# Sourced components that require resume_training
resume_components = [p for p in sourced_components if p not in frozen_components]
msg.info(f"Pipeline: {nlp.pipe_names}")
if resume_components:
with nlp.select_pipes(enable=resume_components):
msg.info(f"Resuming training for: {resume_components}")
nlp.resume_training(sgd=optimizer)
with nlp.select_pipes(disable=[*frozen_components, *resume_components]):
nlp.begin_training(lambda: train_corpus(nlp), sgd=optimizer)
# Verify the config after calling 'begin_training' to ensure labels are properly initialized
verify_config(nlp)
if tag_map:
# Replace tag map with provided mapping
nlp.vocab.morphology.load_tag_map(tag_map)
if morph_rules:
# Load morph rules
nlp.vocab.morphology.load_morph_exceptions(morph_rules)
# Load pretrained tok2vec weights - cf. CLI command 'pretrain'
if weights_data is not None:
tok2vec_component = config["pretraining"]["component"]
if tok2vec_component is None:
msg.fail(
f"To use pretrained tok2vec weights, [pretraining.component] "
f"needs to specify the component that should load them.",
exits=1,
)
layer = nlp.get_pipe(tok2vec_component).model
tok2vec_layer = config["pretraining"]["layer"]
if tok2vec_layer:
layer = layer.get_ref(tok2vec_layer)
layer.from_bytes(weights_data)
msg.info(f"Loaded pretrained weights into component '{tok2vec_component}'")
# Create iterator, which yields out info after each optimization step.
msg.info("Start training")
score_weights = T_cfg["score_weights"]
training_step_iterator = train_while_improving(
nlp,
optimizer,
create_train_batches(train_corpus(nlp), batcher, T_cfg["max_epochs"]),
create_evaluation_callback(nlp, dev_corpus, score_weights),
dropout=T_cfg["dropout"],
accumulate_gradient=T_cfg["accumulate_gradient"],
patience=T_cfg["patience"],
max_steps=T_cfg["max_steps"],
eval_frequency=T_cfg["eval_frequency"],
raw_text=None,
exclude=frozen_components,
)
msg.info(f"Training. Initial learn rate: {optimizer.learn_rate}")
with nlp.select_pipes(disable=frozen_components):
print_row, finalize_logger = train_logger(nlp)
try:
progress = tqdm.tqdm(total=T_cfg["eval_frequency"], leave=False)
progress.set_description(f"Epoch 1")
for batch, info, is_best_checkpoint in training_step_iterator:
progress.update(1)
if is_best_checkpoint is not None:
progress.close()
print_row(info)
if is_best_checkpoint and output_path is not None:
with nlp.select_pipes(disable=frozen_components):
update_meta(T_cfg, nlp, info)
with nlp.use_params(optimizer.averages):
nlp = before_to_disk(nlp)
nlp.to_disk(output_path / "model-best")
progress = tqdm.tqdm(total=T_cfg["eval_frequency"], leave=False)
progress.set_description(f"Epoch {info['epoch']}")
except Exception as e:
finalize_logger()
if output_path is not None:
# We don't want to swallow the traceback if we don't have a
# specific error.
msg.warn(
f"Aborting and saving the final best model. "
f"Encountered exception: {str(e)}"
)
nlp = before_to_disk(nlp)
nlp.to_disk(output_path / "model-final")
raise e
finally:
finalize_logger()
if output_path is not None:
final_model_path = output_path / "model-final"
if optimizer.averages:
with nlp.use_params(optimizer.averages):
nlp.to_disk(final_model_path)
else:
nlp.to_disk(final_model_path)
msg.good(f"Saved pipeline to output directory {final_model_path}")
def create_train_batches(iterator, batcher, max_epochs: int):
epoch = 0
examples = list(iterator)
if not examples:
# Raise error if no data
raise ValueError(Errors.E986)
while max_epochs < 1 or epoch != max_epochs:
random.shuffle(examples)
for batch in batcher(examples):
yield epoch, batch
epoch += 1
def create_evaluation_callback(
nlp: Language, dev_corpus: Callable, weights: Dict[str, float]
) -> Callable[[], Tuple[float, Dict[str, float]]]:
weights = {key: value for key, value in weights.items() if value is not None}
def evaluate() -> Tuple[float, Dict[str, float]]:
dev_examples = list(dev_corpus(nlp))
scores = nlp.evaluate(dev_examples)
# Calculate a weighted sum based on score_weights for the main score.
# We can only consider scores that are ints/floats, not dicts like
# entity scores per type etc.
for key, value in scores.items():
if key in weights and not isinstance(value, (int, float)):
raise ValueError(Errors.E915.format(name=key, score_type=type(value)))
try:
weighted_score = sum(
scores.get(s, 0.0) * weights.get(s, 0.0) for s in weights
)
except KeyError as e:
keys = list(scores.keys())
err = Errors.E983.format(dict="score_weights", key=str(e), keys=keys)
raise KeyError(err) from None
return weighted_score, scores
return evaluate
def create_before_to_disk_callback(
callback: Optional[Callable[[Language], Language]]
) -> Callable[[Language], Language]:
def before_to_disk(nlp: Language) -> Language:
if not callback:
return nlp
modified_nlp = callback(nlp)
if not isinstance(modified_nlp, Language):
err = Errors.E914.format(name="before_to_disk", value=type(modified_nlp))
raise ValueError(err)
return modified_nlp
return before_to_disk
def train_while_improving(
nlp: Language,
optimizer: Optimizer,
train_data,
evaluate,
*,
dropout: float,
eval_frequency: int,
accumulate_gradient: int,
patience: int,
max_steps: int,
raw_text: List[Dict[str, str]],
exclude: List[str],
):
"""Train until an evaluation stops improving. Works as a generator,
with each iteration yielding a tuple `(batch, info, is_best_checkpoint)`,
where info is a dict, and is_best_checkpoint is in [True, False, None] --
None indicating that the iteration was not evaluated as a checkpoint.
The evaluation is conducted by calling the evaluate callback.
Positional arguments:
nlp: The spaCy pipeline to evaluate.
optimizer: The optimizer callable.
train_data (Iterable[Batch]): A generator of batches, with the training
data. Each batch should be a Sized[Tuple[Input, Annot]]. The training
data iterable needs to take care of iterating over the epochs and
shuffling.
evaluate (Callable[[], Tuple[float, Any]]): A callback to perform evaluation.
The callback should take no arguments and return a tuple
`(main_score, other_scores)`. The main_score should be a float where
higher is better. other_scores can be any object.
Every iteration, the function yields out a tuple with:
* batch: A list of Example objects.
* info: A dict with various information about the last update (see below).
* is_best_checkpoint: A value in None, False, True, indicating whether this
was the best evaluation so far. You should use this to save the model
checkpoints during training. If None, evaluation was not conducted on
that iteration. False means evaluation was conducted, but a previous
evaluation was better.
The info dict provides the following information:
epoch (int): How many passes over the data have been completed.
step (int): How many steps have been completed.
score (float): The main score from the last evaluation.
other_scores: : The other scores from the last evaluation.
losses: The accumulated losses throughout training.
checkpoints: A list of previous results, where each result is a
(score, step, epoch) tuple.
"""
if isinstance(dropout, float):
dropouts = thinc.schedules.constant(dropout)
else:
dropouts = dropout
results = []
losses = {}
if raw_text:
random.shuffle(raw_text)
raw_examples = [
Example.from_dict(nlp.make_doc(rt["text"]), {}) for rt in raw_text
]
raw_batches = util.minibatch(raw_examples, size=8)
words_seen = 0
start_time = timer()
for step, (epoch, batch) in enumerate(train_data):
dropout = next(dropouts)
for subbatch in subdivide_batch(batch, accumulate_gradient):
nlp.update(
subbatch, drop=dropout, losses=losses, sgd=False, exclude=exclude
)
if raw_text:
# If raw text is available, perform 'rehearsal' updates,
# which use unlabelled data to reduce overfitting.
raw_batch = list(next(raw_batches))
nlp.rehearse(raw_batch, sgd=optimizer, losses=losses, exclude=exclude)
# TODO: refactor this so we don't have to run it separately in here
for name, proc in nlp.pipeline:
if (
name not in exclude
and hasattr(proc, "model")
and proc.model not in (True, False, None)
):
proc.model.finish_update(optimizer)
optimizer.step_schedules()
if not (step % eval_frequency):
if optimizer.averages:
with nlp.use_params(optimizer.averages):
score, other_scores = evaluate()
else:
score, other_scores = evaluate()
results.append((score, step))
is_best_checkpoint = score == max(results)[0]
else:
score, other_scores = (None, None)
is_best_checkpoint = None
words_seen += sum(len(eg) for eg in batch)
info = {
"epoch": epoch,
"step": step,
"score": score,
"other_scores": other_scores,
"losses": losses,
"checkpoints": results,
"seconds": int(timer() - start_time),
"words": words_seen,
}
yield batch, info, is_best_checkpoint
if is_best_checkpoint is not None:
losses = {}
# Stop if no improvement in `patience` updates (if specified)
best_score, best_step = max(results)
if patience and (step - best_step) >= patience:
break
# Stop if we've exhausted our max steps (if specified)
if max_steps and step >= max_steps:
break
def subdivide_batch(batch, accumulate_gradient):
batch = list(batch)
batch.sort(key=lambda eg: len(eg.predicted))
sub_len = len(batch) // accumulate_gradient
start = 0
for i in range(accumulate_gradient):
subbatch = batch[start : start + sub_len]
if subbatch:
yield subbatch
start += len(subbatch)
subbatch = batch[start:]
if subbatch:
yield subbatch
def update_meta(
training: Union[Dict[str, Any], Config], nlp: Language, info: Dict[str, Any]
) -> None:
nlp.meta["performance"] = {}
for metric in training["score_weights"]:
if metric is not None:
nlp.meta["performance"][metric] = info["other_scores"].get(metric, 0.0)
for pipe_name in nlp.pipe_names:
nlp.meta["performance"][f"{pipe_name}_loss"] = info["losses"][pipe_name]
def load_from_paths(
config: Config,
) -> Tuple[List[Dict[str, str]], Dict[str, dict], bytes]:
# TODO: separate checks from loading
raw_text = util.ensure_path(config["training"]["raw_text"])
if raw_text is not None:
if not raw_text.exists():
msg.fail("Can't find raw text", raw_text, exits=1)
raw_text = list(srsly.read_jsonl(config["training"]["raw_text"]))
tag_map = {}
morph_rules = {}
weights_data = None
init_tok2vec = util.ensure_path(config["training"]["init_tok2vec"])
if init_tok2vec is not None:
if not init_tok2vec.exists():
msg.fail("Can't find pretrained tok2vec", init_tok2vec, exits=1)
with init_tok2vec.open("rb") as file_:
weights_data = file_.read()
return raw_text, tag_map, morph_rules, weights_data
def verify_cli_args(config_path: Path, output_path: Optional[Path] = None) -> None: def verify_cli_args(config_path: Path, output_path: Optional[Path] = None) -> None:
@ -427,30 +61,3 @@ def verify_cli_args(config_path: Path, output_path: Optional[Path] = None) -> No
if not output_path.exists(): if not output_path.exists():
output_path.mkdir() output_path.mkdir()
msg.good(f"Created output directory: {output_path}") msg.good(f"Created output directory: {output_path}")
def verify_config(nlp: Language) -> None:
"""Perform additional checks based on the config, loaded nlp object and training data."""
# TODO: maybe we should validate based on the actual components, the list
# in config["nlp"]["pipeline"] instead?
for pipe_config in nlp.config["components"].values():
# We can't assume that the component name == the factory
factory = pipe_config["factory"]
if factory == "textcat":
verify_textcat_config(nlp, pipe_config)
def verify_textcat_config(nlp: Language, pipe_config: Dict[str, Any]) -> None:
# if 'positive_label' is provided: double check whether it's in the data and
# the task is binary
if pipe_config.get("positive_label"):
textcat_labels = nlp.get_pipe("textcat").labels
pos_label = pipe_config.get("positive_label")
if pos_label not in textcat_labels:
raise ValueError(
Errors.E920.format(pos_label=pos_label, labels=textcat_labels)
)
if len(list(textcat_labels)) != 2:
raise ValueError(
Errors.E919.format(pos_label=pos_label, labels=textcat_labels)
)

View File

@ -1,7 +1,8 @@
[paths] [paths]
train = "" train = null
dev = "" dev = null
raw = null vectors = null
vocab_data = null
init_tok2vec = null init_tok2vec = null
[system] [system]
@ -35,6 +36,11 @@ gold_preproc = false
max_length = 0 max_length = 0
# Limitation on number of training examples # Limitation on number of training examples
limit = 0 limit = 0
# Apply some simply data augmentation, where we replace tokens with variations.
# This is especially useful for punctuation and case replacement, to help
# generalize beyond corpora that don't have smart-quotes, or only have smart
# quotes, etc.
augmenter = null
[corpora.dev] [corpora.dev]
@readers = "spacy.Corpus.v1" @readers = "spacy.Corpus.v1"
@ -47,6 +53,7 @@ gold_preproc = false
max_length = 0 max_length = 0
# Limitation on number of training examples # Limitation on number of training examples
limit = 0 limit = 0
augmenter = null
# Training hyper-parameters and additional features. # Training hyper-parameters and additional features.
[training] [training]
@ -54,11 +61,6 @@ seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator} gpu_allocator = ${system.gpu_allocator}
dropout = 0.1 dropout = 0.1
accumulate_gradient = 1 accumulate_gradient = 1
# Extra resources for transfer-learning or pseudo-rehearsal
init_tok2vec = ${paths.init_tok2vec}
raw_text = ${paths.raw}
vectors = null
lookups = null
# Controls early-stopping. 0 or -1 mean unlimited. # Controls early-stopping. 0 or -1 mean unlimited.
patience = 1600 patience = 1600
max_epochs = 0 max_epochs = 0
@ -99,3 +101,18 @@ grad_clip = 1.0
use_averages = false use_averages = false
eps = 1e-8 eps = 1e-8
learn_rate = 0.001 learn_rate = 0.001
# The 'initialize' step is run before training or pretraining. Components and
# the tokenizer can each define their own arguments via their .initialize
# methods that are populated by the config. This lets them gather resources like
# lookup tables and build label sets, construct vocabularies, etc.
[initialize]
vocab_data = ${paths.vocab_data}
lookups = null
vectors = ${paths.vectors}
# Extra resources for transfer-learning or pseudo-rehearsal
init_tok2vec = ${paths.init_tok2vec}
# Arguments passed to the tokenizer's initialize method
tokenizer = {}
# Arguments passed to the initialize methods of the components (keyed by component name)
components = {}

View File

@ -1,3 +1,6 @@
[paths]
raw_text = null
[pretraining] [pretraining]
max_epochs = 1000 max_epochs = 1000
dropout = 0.2 dropout = 0.2
@ -32,7 +35,7 @@ learn_rate = 0.001
[corpora.pretrain] [corpora.pretrain]
@readers = "spacy.JsonlReader.v1" @readers = "spacy.JsonlReader.v1"
path = ${paths.raw} path = ${paths.raw_text}
min_length = 5 min_length = 5
max_length = 500 max_length = 500
limit = 0 limit = 0

View File

@ -85,6 +85,7 @@ class Warnings:
"attribute or operator.") "attribute or operator.")
# TODO: fix numbering after merging develop into master # TODO: fix numbering after merging develop into master
W089 = ("The nlp.begin_training method has been renamed to nlp.initialize.")
W090 = ("Could not locate any {format} files in path '{path}'.") W090 = ("Could not locate any {format} files in path '{path}'.")
W091 = ("Could not clean/remove the temp directory at {dir}: {msg}.") W091 = ("Could not clean/remove the temp directory at {dir}: {msg}.")
W092 = ("Ignoring annotations for sentence starts, as dependency heads are set.") W092 = ("Ignoring annotations for sentence starts, as dependency heads are set.")
@ -306,7 +307,7 @@ class Errors:
"settings: {opts}") "settings: {opts}")
E107 = ("Value of doc._.{attr} is not JSON-serializable: {value}") E107 = ("Value of doc._.{attr} is not JSON-serializable: {value}")
E109 = ("Component '{name}' could not be run. Did you forget to " E109 = ("Component '{name}' could not be run. Did you forget to "
"call begin_training()?") "call initialize()?")
E110 = ("Invalid displaCy render wrapper. Expected callable, got: {obj}") E110 = ("Invalid displaCy render wrapper. Expected callable, got: {obj}")
E111 = ("Pickling a token is not supported, because tokens are only views " E111 = ("Pickling a token is not supported, because tokens are only views "
"of the parent Doc and can't exist on their own. A pickled token " "of the parent Doc and can't exist on their own. A pickled token "
@ -376,7 +377,7 @@ class Errors:
"provided {found}.") "provided {found}.")
E143 = ("Labels for component '{name}' not initialized. This can be fixed " E143 = ("Labels for component '{name}' not initialized. This can be fixed "
"by calling add_label, or by providing a representative batch of " "by calling add_label, or by providing a representative batch of "
"examples to the component's begin_training method.") "examples to the component's initialize method.")
E145 = ("Error reading `{param}` from input file.") E145 = ("Error reading `{param}` from input file.")
E146 = ("Could not access `{path}`.") E146 = ("Could not access `{path}`.")
E147 = ("Unexpected error in the {method} functionality of the " E147 = ("Unexpected error in the {method} functionality of the "
@ -476,6 +477,14 @@ class Errors:
E201 = ("Span index out of range.") E201 = ("Span index out of range.")
# TODO: fix numbering after merging develop into master # TODO: fix numbering after merging develop into master
E912 = ("No orth_variants lookups table for data augmentation available for "
"language '{lang}'. If orth_variants are available in "
"spacy-lookups-data, make sure the package is installed and the "
"table is loaded in the [initialize.lookups] block of your config. "
"Alternatively, you can provide your own Lookups object with a "
"table orth_variants as the argument 'lookuos' of the augmenter.")
E913 = ("Corpus path can't be None. Maybe you forgot to define it in your "
"config.cfg or override it on the CLI?")
E914 = ("Executing {name} callback failed. Expected the function to " E914 = ("Executing {name} callback failed. Expected the function to "
"return the nlp object but got: {value}. Maybe you forgot to return " "return the nlp object but got: {value}. Maybe you forgot to return "
"the modified object in your function?") "the modified object in your function?")
@ -517,7 +526,7 @@ class Errors:
"but the provided argument {loc} points to a file.") "but the provided argument {loc} points to a file.")
E929 = ("A 'KnowledgeBase' could not be read from {loc} - the path does " E929 = ("A 'KnowledgeBase' could not be read from {loc} - the path does "
"not seem to exist.") "not seem to exist.")
E930 = ("Received invalid get_examples callback in {name}.begin_training. " E930 = ("Received invalid get_examples callback in {name}.initialize. "
"Expected function that returns an iterable of Example objects but " "Expected function that returns an iterable of Example objects but "
"got: {obj}") "got: {obj}")
E931 = ("Encountered Pipe subclass without Pipe.{method} method in component " E931 = ("Encountered Pipe subclass without Pipe.{method} method in component "
@ -553,7 +562,10 @@ class Errors:
E953 = ("Mismatched IDs received by the Tok2Vec listener: {id1} vs. {id2}") E953 = ("Mismatched IDs received by the Tok2Vec listener: {id1} vs. {id2}")
E954 = ("The Tok2Vec listener did not receive any valid input from an upstream " E954 = ("The Tok2Vec listener did not receive any valid input from an upstream "
"component.") "component.")
E955 = ("Can't find table(s) '{table}' for language '{lang}' in spacy-lookups-data.") E955 = ("Can't find table(s) '{table}' for language '{lang}' in "
"spacy-lookups-data. If you want to initialize a blank nlp object, "
"make sure you have the spacy-lookups-data package installed or "
"remove the [initialize.lookups] block from your config.")
E956 = ("Can't find component '{name}' in [components] block in the config. " E956 = ("Can't find component '{name}' in [components] block in the config. "
"Available components: {opts}") "Available components: {opts}")
E957 = ("Writing directly to Language.factories isn't needed anymore in " E957 = ("Writing directly to Language.factories isn't needed anymore in "
@ -670,10 +682,10 @@ class Errors:
"'{token_attrs}'.") "'{token_attrs}'.")
E999 = ("Unable to merge the `Doc` objects because they do not all share " E999 = ("Unable to merge the `Doc` objects because they do not all share "
"the same `Vocab`.") "the same `Vocab`.")
E1000 = ("No pkuseg model available. Provide a pkuseg model when " E1000 = ("The Chinese word segmenter is pkuseg but no pkuseg model was "
"initializing the pipeline:\n" "loaded. Provide the name of a pretrained model or the path to "
'cfg = {"tokenizer": {"segmenter": "pkuseg", "pkuseg_model": name_or_path}}\n' "a model and initialize the pipeline:\n\n"
'nlp = Chinese(config=cfg)') 'nlp.tokenizer.initialize(pkuseg_model="default")')
E1001 = ("Target token outside of matched span for match with tokens " E1001 = ("Target token outside of matched span for match with tokens "
"'{span}' and offset '{index}' matched by patterns '{patterns}'.") "'{span}' and offset '{index}' matched by patterns '{patterns}'.")
E1002 = ("Span index out of range.") E1002 = ("Span index out of range.")

View File

@ -1,5 +1,4 @@
from typing import Optional from typing import Optional
from thinc.api import Model from thinc.api import Model
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS

View File

@ -3,8 +3,7 @@ from ...tokens import Token
class EnglishLemmatizer(Lemmatizer): class EnglishLemmatizer(Lemmatizer):
"""English lemmatizer. Only overrides is_base_form. """English lemmatizer. Only overrides is_base_form."""
"""
def is_base_form(self, token: Token) -> bool: def is_base_form(self, token: Token) -> bool:
""" """

View File

@ -58,7 +58,7 @@ def noun_bounds(
doc, token, np_left_deps, np_right_deps, stop_deps doc, token, np_left_deps, np_right_deps, stop_deps
) )
filter_func = lambda t: is_verb_token(t) or t.dep in stop_deps filter_func = lambda t: is_verb_token(t) or t.dep in stop_deps
if list(filter(filter_func, doc[left_bound.i : right.i],)): if list(filter(filter_func, doc[left_bound.i : right.i])):
break break
else: else:
right_bound = right right_bound = right

View File

@ -2,7 +2,6 @@ from typing import Optional, Union, Dict, Any
from pathlib import Path from pathlib import Path
import srsly import srsly
from collections import namedtuple from collections import namedtuple
from thinc.api import Config
from .stop_words import STOP_WORDS from .stop_words import STOP_WORDS
from .syntax_iterators import SYNTAX_ITERATORS from .syntax_iterators import SYNTAX_ITERATORS
@ -12,9 +11,11 @@ from .tag_bigram_map import TAG_BIGRAM_MAP
from ...compat import copy_reg from ...compat import copy_reg
from ...errors import Errors from ...errors import Errors
from ...language import Language from ...language import Language
from ...scorer import Scorer
from ...symbols import POS from ...symbols import POS
from ...tokens import Doc from ...tokens import Doc
from ...util import DummyTokenizer, registry from ...training import validate_examples
from ...util import DummyTokenizer, registry, load_config_from_str
from ... import util from ... import util
@ -130,6 +131,10 @@ class JapaneseTokenizer(DummyTokenizer):
) )
return sub_tokens_list return sub_tokens_list
def score(self, examples):
validate_examples(examples, "JapaneseTokenizer.score")
return Scorer.score_tokenization(examples)
def _get_config(self) -> Dict[str, Any]: def _get_config(self) -> Dict[str, Any]:
return {"split_mode": self.split_mode} return {"split_mode": self.split_mode}
@ -160,7 +165,7 @@ class JapaneseTokenizer(DummyTokenizer):
class JapaneseDefaults(Language.Defaults): class JapaneseDefaults(Language.Defaults):
config = Config().from_str(DEFAULT_CONFIG) config = load_config_from_str(DEFAULT_CONFIG)
stop_words = STOP_WORDS stop_words = STOP_WORDS
syntax_iterators = SYNTAX_ITERATORS syntax_iterators = SYNTAX_ITERATORS
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False} writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}

View File

@ -1,5 +1,4 @@
from typing import Optional, Any, Dict from typing import Optional, Any, Dict
from thinc.api import Config
from .stop_words import STOP_WORDS from .stop_words import STOP_WORDS
from .tag_map import TAG_MAP from .tag_map import TAG_MAP
@ -7,8 +6,10 @@ from .lex_attrs import LEX_ATTRS
from ...language import Language from ...language import Language
from ...tokens import Doc from ...tokens import Doc
from ...compat import copy_reg from ...compat import copy_reg
from ...scorer import Scorer
from ...symbols import POS from ...symbols import POS
from ...util import DummyTokenizer, registry from ...training import validate_examples
from ...util import DummyTokenizer, registry, load_config_from_str
DEFAULT_CONFIG = """ DEFAULT_CONFIG = """
@ -62,9 +63,13 @@ class KoreanTokenizer(DummyTokenizer):
lemma = surface lemma = surface
yield {"surface": surface, "lemma": lemma, "tag": tag} yield {"surface": surface, "lemma": lemma, "tag": tag}
def score(self, examples):
validate_examples(examples, "KoreanTokenizer.score")
return Scorer.score_tokenization(examples)
class KoreanDefaults(Language.Defaults): class KoreanDefaults(Language.Defaults):
config = Config().from_str(DEFAULT_CONFIG) config = load_config_from_str(DEFAULT_CONFIG)
lex_attr_getters = LEX_ATTRS lex_attr_getters = LEX_ATTRS
stop_words = STOP_WORDS stop_words = STOP_WORDS
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False} writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}

View File

@ -1,5 +1,4 @@
from typing import Optional from typing import Optional
from thinc.api import Model from thinc.api import Model
from .stop_words import STOP_WORDS from .stop_words import STOP_WORDS

View File

@ -108,8 +108,8 @@ _num_words = [
def like_num(text): def like_num(text):
""" """
Check if text resembles a number Check if text resembles a number
""" """
if text.startswith(("+", "-", "±", "~")): if text.startswith(("+", "-", "±", "~")):
text = text[1:] text = text[1:]
text = text.replace(",", "").replace(".", "") text = text.replace(",", "").replace(".", "")

View File

@ -1,10 +1,8 @@
from thinc.api import Config
from .stop_words import STOP_WORDS from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS from .lex_attrs import LEX_ATTRS
from ...language import Language from ...language import Language
from ...tokens import Doc from ...tokens import Doc
from ...util import DummyTokenizer, registry from ...util import DummyTokenizer, registry, load_config_from_str
DEFAULT_CONFIG = """ DEFAULT_CONFIG = """
@ -42,7 +40,7 @@ class ThaiTokenizer(DummyTokenizer):
class ThaiDefaults(Language.Defaults): class ThaiDefaults(Language.Defaults):
config = Config().from_str(DEFAULT_CONFIG) config = load_config_from_str(DEFAULT_CONFIG)
lex_attr_getters = LEX_ATTRS lex_attr_getters = LEX_ATTRS
stop_words = STOP_WORDS stop_words = STOP_WORDS

View File

@ -1,10 +1,8 @@
from thinc.api import Config from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from ...language import Language from ...language import Language
from ...tokens import Doc from ...tokens import Doc
from .stop_words import STOP_WORDS from ...util import DummyTokenizer, registry, load_config_from_str
from ...util import DummyTokenizer, registry
from .lex_attrs import LEX_ATTRS
DEFAULT_CONFIG = """ DEFAULT_CONFIG = """
@ -17,7 +15,7 @@ use_pyvi = true
@registry.tokenizers("spacy.vi.VietnameseTokenizer") @registry.tokenizers("spacy.vi.VietnameseTokenizer")
def create_vietnamese_tokenizer(use_pyvi: bool = True,): def create_vietnamese_tokenizer(use_pyvi: bool = True):
def vietnamese_tokenizer_factory(nlp): def vietnamese_tokenizer_factory(nlp):
return VietnameseTokenizer(nlp, use_pyvi=use_pyvi) return VietnameseTokenizer(nlp, use_pyvi=use_pyvi)
@ -55,7 +53,7 @@ class VietnameseTokenizer(DummyTokenizer):
class VietnameseDefaults(Language.Defaults): class VietnameseDefaults(Language.Defaults):
config = Config().from_str(DEFAULT_CONFIG) config = load_config_from_str(DEFAULT_CONFIG)
lex_attr_getters = LEX_ATTRS lex_attr_getters = LEX_ATTRS
stop_words = STOP_WORDS stop_words = STOP_WORDS

View File

@ -1,21 +1,25 @@
from typing import Optional, List, Dict, Any from typing import Optional, List, Dict, Any, Callable, Iterable
from enum import Enum from enum import Enum
import tempfile import tempfile
import srsly import srsly
import warnings import warnings
from pathlib import Path from pathlib import Path
from thinc.api import Config
from ...errors import Warnings, Errors from ...errors import Warnings, Errors
from ...language import Language from ...language import Language
from ...scorer import Scorer
from ...tokens import Doc from ...tokens import Doc
from ...util import DummyTokenizer, registry from ...training import validate_examples, Example
from ...util import DummyTokenizer, registry, load_config_from_str
from .lex_attrs import LEX_ATTRS from .lex_attrs import LEX_ATTRS
from .stop_words import STOP_WORDS from .stop_words import STOP_WORDS
from ... import util from ... import util
_PKUSEG_INSTALL_MSG = "install it with `pip install pkuseg==0.0.25` or from https://github.com/lancopku/pkuseg-python" # fmt: off
_PKUSEG_INSTALL_MSG = "install pkuseg and pickle5 with `pip install pkuseg==0.0.25 pickle5`"
_PKUSEG_PICKLE_WARNING = "Failed to force pkuseg model to use pickle protocol 4. If you're saving this model with python 3.8, it may not work with python 3.6-3.7."
# fmt: on
DEFAULT_CONFIG = """ DEFAULT_CONFIG = """
[nlp] [nlp]
@ -23,6 +27,10 @@ DEFAULT_CONFIG = """
[nlp.tokenizer] [nlp.tokenizer]
@tokenizers = "spacy.zh.ChineseTokenizer" @tokenizers = "spacy.zh.ChineseTokenizer"
segmenter = "char" segmenter = "char"
[initialize]
[initialize.tokenizer]
pkuseg_model = null pkuseg_model = null
pkuseg_user_dict = "default" pkuseg_user_dict = "default"
""" """
@ -39,41 +47,23 @@ class Segmenter(str, Enum):
@registry.tokenizers("spacy.zh.ChineseTokenizer") @registry.tokenizers("spacy.zh.ChineseTokenizer")
def create_chinese_tokenizer( def create_chinese_tokenizer(segmenter: Segmenter = Segmenter.char,):
segmenter: Segmenter = Segmenter.char,
pkuseg_model: Optional[str] = None,
pkuseg_user_dict: Optional[str] = "default",
):
def chinese_tokenizer_factory(nlp): def chinese_tokenizer_factory(nlp):
return ChineseTokenizer( return ChineseTokenizer(nlp, segmenter=segmenter)
nlp,
segmenter=segmenter,
pkuseg_model=pkuseg_model,
pkuseg_user_dict=pkuseg_user_dict,
)
return chinese_tokenizer_factory return chinese_tokenizer_factory
class ChineseTokenizer(DummyTokenizer): class ChineseTokenizer(DummyTokenizer):
def __init__( def __init__(
self, self, nlp: Language, segmenter: Segmenter = Segmenter.char,
nlp: Language,
segmenter: Segmenter = Segmenter.char,
pkuseg_model: Optional[str] = None,
pkuseg_user_dict: Optional[str] = None,
): ):
self.vocab = nlp.vocab self.vocab = nlp.vocab
if isinstance(segmenter, Segmenter): # we might have the Enum here if isinstance(segmenter, Segmenter):
segmenter = segmenter.value segmenter = segmenter.value
self.segmenter = segmenter self.segmenter = segmenter
self.pkuseg_model = pkuseg_model
self.pkuseg_user_dict = pkuseg_user_dict
self.pkuseg_seg = None self.pkuseg_seg = None
self.jieba_seg = None self.jieba_seg = None
self.configure_segmenter(segmenter)
def configure_segmenter(self, segmenter: str):
if segmenter not in Segmenter.values(): if segmenter not in Segmenter.values():
warn_msg = Warnings.W103.format( warn_msg = Warnings.W103.format(
lang="Chinese", lang="Chinese",
@ -83,12 +73,21 @@ class ChineseTokenizer(DummyTokenizer):
) )
warnings.warn(warn_msg) warnings.warn(warn_msg)
self.segmenter = Segmenter.char self.segmenter = Segmenter.char
self.jieba_seg = try_jieba_import(self.segmenter) if segmenter == Segmenter.jieba:
self.pkuseg_seg = try_pkuseg_import( self.jieba_seg = try_jieba_import()
self.segmenter,
pkuseg_model=self.pkuseg_model, def initialize(
pkuseg_user_dict=self.pkuseg_user_dict, self,
) get_examples: Optional[Callable[[], Iterable[Example]]] = None,
*,
nlp: Optional[Language] = None,
pkuseg_model: Optional[str] = None,
pkuseg_user_dict: str = "default",
):
if self.segmenter == Segmenter.pkuseg:
self.pkuseg_seg = try_pkuseg_import(
pkuseg_model=pkuseg_model, pkuseg_user_dict=pkuseg_user_dict,
)
def __call__(self, text: str) -> Doc: def __call__(self, text: str) -> Doc:
if self.segmenter == Segmenter.jieba: if self.segmenter == Segmenter.jieba:
@ -136,17 +135,17 @@ class ChineseTokenizer(DummyTokenizer):
warn_msg = Warnings.W104.format(target="pkuseg", current=self.segmenter) warn_msg = Warnings.W104.format(target="pkuseg", current=self.segmenter)
warnings.warn(warn_msg) warnings.warn(warn_msg)
def score(self, examples):
validate_examples(examples, "ChineseTokenizer.score")
return Scorer.score_tokenization(examples)
def _get_config(self) -> Dict[str, Any]: def _get_config(self) -> Dict[str, Any]:
return { return {
"segmenter": self.segmenter, "segmenter": self.segmenter,
"pkuseg_model": self.pkuseg_model,
"pkuseg_user_dict": self.pkuseg_user_dict,
} }
def _set_config(self, config: Dict[str, Any] = {}) -> None: def _set_config(self, config: Dict[str, Any] = {}) -> None:
self.segmenter = config.get("segmenter", Segmenter.char) self.segmenter = config.get("segmenter", Segmenter.char)
self.pkuseg_model = config.get("pkuseg_model", None)
self.pkuseg_user_dict = config.get("pkuseg_user_dict", "default")
def to_bytes(self, **kwargs): def to_bytes(self, **kwargs):
pkuseg_features_b = b"" pkuseg_features_b = b""
@ -157,6 +156,22 @@ class ChineseTokenizer(DummyTokenizer):
self.pkuseg_seg.feature_extractor.save(tempdir) self.pkuseg_seg.feature_extractor.save(tempdir)
self.pkuseg_seg.model.save(tempdir) self.pkuseg_seg.model.save(tempdir)
tempdir = Path(tempdir) tempdir = Path(tempdir)
# pkuseg saves features.pkl with pickle.HIGHEST_PROTOCOL, which
# means that it will be saved with pickle protocol 5 with
# python 3.8, which can't be reloaded with python 3.6-3.7.
# To try to make the model compatible with python 3.6+, reload
# the data with pickle5 and convert it back to protocol 4.
try:
import pickle5
with open(tempdir / "features.pkl", "rb") as fileh:
features = pickle5.load(fileh)
with open(tempdir / "features.pkl", "wb") as fileh:
pickle5.dump(features, fileh, protocol=4)
except ImportError as e:
raise e
except Exception:
warnings.warn(_PKUSEG_PICKLE_WARNING)
with open(tempdir / "features.pkl", "rb") as fileh: with open(tempdir / "features.pkl", "rb") as fileh:
pkuseg_features_b = fileh.read() pkuseg_features_b = fileh.read()
with open(tempdir / "weights.npz", "rb") as fileh: with open(tempdir / "weights.npz", "rb") as fileh:
@ -229,6 +244,18 @@ class ChineseTokenizer(DummyTokenizer):
path.mkdir(parents=True) path.mkdir(parents=True)
self.pkuseg_seg.model.save(path) self.pkuseg_seg.model.save(path)
self.pkuseg_seg.feature_extractor.save(path) self.pkuseg_seg.feature_extractor.save(path)
# try to convert features.pkl to pickle protocol 4
try:
import pickle5
with open(path / "features.pkl", "rb") as fileh:
features = pickle5.load(fileh)
with open(path / "features.pkl", "wb") as fileh:
pickle5.dump(features, fileh, protocol=4)
except ImportError as e:
raise e
except Exception:
warnings.warn(_PKUSEG_PICKLE_WARNING)
def save_pkuseg_processors(path): def save_pkuseg_processors(path):
if self.pkuseg_seg: if self.pkuseg_seg:
@ -285,7 +312,7 @@ class ChineseTokenizer(DummyTokenizer):
class ChineseDefaults(Language.Defaults): class ChineseDefaults(Language.Defaults):
config = Config().from_str(DEFAULT_CONFIG) config = load_config_from_str(DEFAULT_CONFIG)
lex_attr_getters = LEX_ATTRS lex_attr_getters = LEX_ATTRS
stop_words = STOP_WORDS stop_words = STOP_WORDS
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False} writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
@ -296,47 +323,33 @@ class Chinese(Language):
Defaults = ChineseDefaults Defaults = ChineseDefaults
def try_jieba_import(segmenter: str) -> None: def try_jieba_import() -> None:
try: try:
import jieba import jieba
if segmenter == Segmenter.jieba: # segment a short text to have jieba initialize its cache in advance
# segment a short text to have jieba initialize its cache in advance list(jieba.cut("作为", cut_all=False))
list(jieba.cut("作为", cut_all=False))
return jieba return jieba
except ImportError: except ImportError:
if segmenter == Segmenter.jieba: msg = (
msg = ( "Jieba not installed. To use jieba, install it with `pip "
"Jieba not installed. To use jieba, install it with `pip " " install jieba` or from https://github.com/fxsjy/jieba"
" install jieba` or from https://github.com/fxsjy/jieba" )
) raise ImportError(msg) from None
raise ImportError(msg) from None
def try_pkuseg_import(segmenter: str, pkuseg_model: str, pkuseg_user_dict: str) -> None: def try_pkuseg_import(pkuseg_model: str, pkuseg_user_dict: str) -> None:
try: try:
import pkuseg import pkuseg
if pkuseg_model: return pkuseg.pkuseg(pkuseg_model, pkuseg_user_dict)
return pkuseg.pkuseg(pkuseg_model, pkuseg_user_dict)
elif segmenter == Segmenter.pkuseg:
msg = (
"The Chinese word segmenter is 'pkuseg' but no pkuseg model "
"was specified. Please provide the name of a pretrained model "
"or the path to a model with:\n"
'cfg = {"nlp": {"tokenizer": {"segmenter": "pkuseg", "pkuseg_model": name_or_path }}\n'
"nlp = Chinese.from_config(cfg)"
)
raise ValueError(msg)
except ImportError: except ImportError:
if segmenter == Segmenter.pkuseg: msg = "pkuseg not installed. To use pkuseg, " + _PKUSEG_INSTALL_MSG
msg = "pkuseg not installed. To use pkuseg, " + _PKUSEG_INSTALL_MSG raise ImportError(msg) from None
raise ImportError(msg) from None
except FileNotFoundError: except FileNotFoundError:
if segmenter == Segmenter.pkuseg: msg = "Unable to load pkuseg model from: " + pkuseg_model
msg = "Unable to load pkuseg model from: " + pkuseg_model raise FileNotFoundError(msg) from None
raise FileNotFoundError(msg) from None
def _get_pkuseg_trie_data(node, path=""): def _get_pkuseg_trie_data(node, path=""):

View File

@ -8,7 +8,7 @@ from contextlib import contextmanager
from copy import deepcopy from copy import deepcopy
from pathlib import Path from pathlib import Path
import warnings import warnings
from thinc.api import Model, get_current_ops, Config, require_gpu, Optimizer from thinc.api import Model, get_current_ops, Config, Optimizer
import srsly import srsly
import multiprocessing as mp import multiprocessing as mp
from itertools import chain, cycle from itertools import chain, cycle
@ -18,8 +18,9 @@ from .tokens.underscore import Underscore
from .vocab import Vocab, create_vocab from .vocab import Vocab, create_vocab
from .pipe_analysis import validate_attrs, analyze_pipes, print_pipe_analysis from .pipe_analysis import validate_attrs, analyze_pipes, print_pipe_analysis
from .training import Example, validate_examples from .training import Example, validate_examples
from .training.initialize import init_vocab, init_tok2vec
from .scorer import Scorer from .scorer import Scorer
from .util import create_default_optimizer, registry, SimpleFrozenList from .util import registry, SimpleFrozenList
from .util import SimpleFrozenDict, combine_score_weights, CONFIG_SECTION_ORDER from .util import SimpleFrozenDict, combine_score_weights, CONFIG_SECTION_ORDER
from .lang.tokenizer_exceptions import URL_MATCH, BASE_EXCEPTIONS from .lang.tokenizer_exceptions import URL_MATCH, BASE_EXCEPTIONS
from .lang.punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES from .lang.punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
@ -27,7 +28,8 @@ from .lang.punctuation import TOKENIZER_INFIXES
from .tokens import Doc from .tokens import Doc
from .tokenizer import Tokenizer from .tokenizer import Tokenizer
from .errors import Errors, Warnings from .errors import Errors, Warnings
from .schemas import ConfigSchema from .schemas import ConfigSchema, ConfigSchemaNlp, ConfigSchemaInit
from .schemas import ConfigSchemaPretrain, validate_init_settings
from .git_info import GIT_VERSION from .git_info import GIT_VERSION
from . import util from . import util
from . import about from . import about
@ -166,11 +168,10 @@ class Language:
self._components = [] self._components = []
self._disabled = set() self._disabled = set()
self.max_length = max_length self.max_length = max_length
self.resolved = {}
# Create the default tokenizer from the default config # Create the default tokenizer from the default config
if not create_tokenizer: if not create_tokenizer:
tokenizer_cfg = {"tokenizer": self._config["nlp"]["tokenizer"]} tokenizer_cfg = {"tokenizer": self._config["nlp"]["tokenizer"]}
create_tokenizer = registry.make_from_config(tokenizer_cfg)["tokenizer"] create_tokenizer = registry.resolve(tokenizer_cfg)["tokenizer"]
self.tokenizer = create_tokenizer(self) self.tokenizer = create_tokenizer(self)
def __init_subclass__(cls, **kwargs): def __init_subclass__(cls, **kwargs):
@ -467,7 +468,7 @@ class Language:
if "nlp" not in arg_names or "name" not in arg_names: if "nlp" not in arg_names or "name" not in arg_names:
raise ValueError(Errors.E964.format(name=name)) raise ValueError(Errors.E964.format(name=name))
# Officially register the factory so we can later call # Officially register the factory so we can later call
# registry.make_from_config and refer to it in the config as # registry.resolve and refer to it in the config as
# @factories = "spacy.Language.xyz". We use the class name here so # @factories = "spacy.Language.xyz". We use the class name here so
# different classes can have different factories. # different classes can have different factories.
registry.factories.register(internal_name, func=factory_func) registry.factories.register(internal_name, func=factory_func)
@ -650,8 +651,9 @@ class Language:
cfg = {factory_name: config} cfg = {factory_name: config}
# We're calling the internal _fill here to avoid constructing the # We're calling the internal _fill here to avoid constructing the
# registered functions twice # registered functions twice
resolved, filled = registry.resolve(cfg, validate=validate) resolved = registry.resolve(cfg, validate=validate)
filled = Config(filled[factory_name]) filled = registry.fill({"cfg": cfg[factory_name]}, validate=validate)["cfg"]
filled = Config(filled)
filled["factory"] = factory_name filled["factory"] = factory_name
filled.pop("@factories", None) filled.pop("@factories", None)
# Remove the extra values we added because we don't want to keep passing # Remove the extra values we added because we don't want to keep passing
@ -1065,7 +1067,7 @@ class Language:
validate_examples(examples, "Language.update") validate_examples(examples, "Language.update")
if sgd is None: if sgd is None:
if self._optimizer is None: if self._optimizer is None:
self._optimizer = create_default_optimizer() self._optimizer = self.create_optimizer()
sgd = self._optimizer sgd = self._optimizer
if component_cfg is None: if component_cfg is None:
component_cfg = {} component_cfg = {}
@ -1123,7 +1125,7 @@ class Language:
validate_examples(examples, "Language.rehearse") validate_examples(examples, "Language.rehearse")
if sgd is None: if sgd is None:
if self._optimizer is None: if self._optimizer is None:
self._optimizer = create_default_optimizer() self._optimizer = self.create_optimizer()
sgd = self._optimizer sgd = self._optimizer
pipes = list(self.pipeline) pipes = list(self.pipeline)
random.shuffle(pipes) random.shuffle(pipes)
@ -1153,61 +1155,73 @@ class Language:
get_examples: Optional[Callable[[], Iterable[Example]]] = None, get_examples: Optional[Callable[[], Iterable[Example]]] = None,
*, *,
sgd: Optional[Optimizer] = None, sgd: Optional[Optimizer] = None,
device: int = -1, ) -> Optimizer:
warnings.warn(Warnings.W089, DeprecationWarning)
return self.initialize(get_examples, sgd=sgd)
def initialize(
self,
get_examples: Optional[Callable[[], Iterable[Example]]] = None,
*,
sgd: Optional[Optimizer] = None,
) -> Optimizer: ) -> Optimizer:
"""Initialize the pipe for training, using data examples if available. """Initialize the pipe for training, using data examples if available.
get_examples (Callable[[], Iterable[Example]]): Optional function that get_examples (Callable[[], Iterable[Example]]): Optional function that
returns gold-standard Example objects. returns gold-standard Example objects.
sgd (thinc.api.Optimizer): Optional optimizer. Will be created with sgd (Optional[Optimizer]): An optimizer to use for updates. If not
create_optimizer if it doesn't exist. provided, will be created using the .create_optimizer() method.
RETURNS (thinc.api.Optimizer): The optimizer. RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://nightly.spacy.io/api/language#begin_training DOCS: https://nightly.spacy.io/api/language#initialize
""" """
if get_examples is None: if get_examples is None:
util.logger.debug( util.logger.debug(
"No 'get_examples' callback provided to 'Language.begin_training', creating dummy examples" "No 'get_examples' callback provided to 'Language.initialize', creating dummy examples"
) )
doc = Doc(self.vocab, words=["x", "y", "z"]) doc = Doc(self.vocab, words=["x", "y", "z"])
get_examples = lambda: [Example.from_dict(doc, {})] get_examples = lambda: [Example.from_dict(doc, {})]
# Populate vocab
if not hasattr(get_examples, "__call__"): if not hasattr(get_examples, "__call__"):
err = Errors.E930.format(name="Language", obj=type(get_examples)) err = Errors.E930.format(name="Language", obj=type(get_examples))
raise ValueError(err) raise ValueError(err)
valid_examples = False # Make sure the config is interpolated so we can resolve subsections
for example in get_examples(): config = self.config.interpolate()
if not isinstance(example, Example): # These are the settings provided in the [initialize] block in the config
err = Errors.E978.format( I = registry.resolve(config["initialize"], schema=ConfigSchemaInit)
name="Language.begin_training", types=type(example) init_vocab(
) self, data=I["vocab_data"], lookups=I["lookups"], vectors=I["vectors"]
raise ValueError(err) )
else: pretrain_cfg = config.get("pretraining")
valid_examples = True if pretrain_cfg:
for word in [t.text for t in example.reference]: P = registry.resolve(pretrain_cfg, schema=ConfigSchemaPretrain)
_ = self.vocab[word] # noqa: F841 init_tok2vec(self, P, I)
if not valid_examples: if self.vocab.vectors.data.shape[1] >= 1:
err = Errors.E930.format(name="Language", obj="empty list") ops = get_current_ops()
raise ValueError(err) self.vocab.vectors.data = ops.asarray(self.vocab.vectors.data)
if device >= 0: # TODO: do we need this here? if hasattr(self.tokenizer, "initialize"):
require_gpu(device) tok_settings = validate_init_settings(
if self.vocab.vectors.data.shape[1] >= 1: self.tokenizer.initialize,
ops = get_current_ops() I["tokenizer"],
self.vocab.vectors.data = ops.asarray(self.vocab.vectors.data) section="tokenizer",
if sgd is None: name="tokenizer",
sgd = create_default_optimizer() )
self._optimizer = sgd self.tokenizer.initialize(get_examples, nlp=self, **tok_settings)
for name, proc in self.pipeline: for name, proc in self.pipeline:
if hasattr(proc, "begin_training"): if hasattr(proc, "initialize"):
proc.begin_training( p_settings = I["components"].get(name, {})
get_examples, pipeline=self.pipeline, sgd=self._optimizer p_settings = validate_init_settings(
proc.initialize, p_settings, section="components", name=name
) )
proc.initialize(get_examples, nlp=self, **p_settings)
self._link_components() self._link_components()
self._optimizer = sgd
if sgd is not None:
self._optimizer = sgd
elif self._optimizer is None:
self._optimizer = self.create_optimizer()
return self._optimizer return self._optimizer
def resume_training( def resume_training(self, *, sgd: Optional[Optimizer] = None) -> Optimizer:
self, *, sgd: Optional[Optimizer] = None, device: int = -1
) -> Optimizer:
"""Continue training a pretrained model. """Continue training a pretrained model.
Create and return an optimizer, and initialize "rehearsal" for any pipeline Create and return an optimizer, and initialize "rehearsal" for any pipeline
@ -1216,22 +1230,20 @@ class Language:
rehearsal, collect samples of text you want the models to retain performance rehearsal, collect samples of text you want the models to retain performance
on, and call nlp.rehearse() with a batch of Example objects. on, and call nlp.rehearse() with a batch of Example objects.
sgd (Optional[Optimizer]): An optimizer.
RETURNS (Optimizer): The optimizer. RETURNS (Optimizer): The optimizer.
DOCS: https://nightly.spacy.io/api/language#resume_training DOCS: https://nightly.spacy.io/api/language#resume_training
""" """
if device >= 0: # TODO: do we need this here? ops = get_current_ops()
require_gpu(device) if self.vocab.vectors.data.shape[1] >= 1:
ops = get_current_ops() self.vocab.vectors.data = ops.asarray(self.vocab.vectors.data)
if self.vocab.vectors.data.shape[1] >= 1:
self.vocab.vectors.data = ops.asarray(self.vocab.vectors.data)
if sgd is None:
sgd = create_default_optimizer()
self._optimizer = sgd
for name, proc in self.pipeline: for name, proc in self.pipeline:
if hasattr(proc, "_rehearsal_model"): if hasattr(proc, "_rehearsal_model"):
proc._rehearsal_model = deepcopy(proc.model) proc._rehearsal_model = deepcopy(proc.model)
if sgd is not None:
self._optimizer = sgd
elif self._optimizer is None:
self._optimizer = self.create_optimizer()
return self._optimizer return self._optimizer
def evaluate( def evaluate(
@ -1293,6 +1305,11 @@ class Language:
results["speed"] = n_words / (end_time - start_time) results["speed"] = n_words / (end_time - start_time)
return results return results
def create_optimizer(self):
"""Create an optimizer, usually using the [training.optimizer] config."""
subconfig = {"optimizer": self.config["training"]["optimizer"]}
return registry.resolve(subconfig)["optimizer"]
@contextmanager @contextmanager
def use_params(self, params: Optional[dict]): def use_params(self, params: Optional[dict]):
"""Replace weights of models in the pipeline with those provided in the """Replace weights of models in the pipeline with those provided in the
@ -1501,7 +1518,7 @@ class Language:
).merge(config) ).merge(config)
if "nlp" not in config: if "nlp" not in config:
raise ValueError(Errors.E985.format(config=config)) raise ValueError(Errors.E985.format(config=config))
config_lang = config["nlp"]["lang"] config_lang = config["nlp"].get("lang")
if config_lang is not None and config_lang != cls.lang: if config_lang is not None and config_lang != cls.lang:
raise ValueError( raise ValueError(
Errors.E958.format( Errors.E958.format(
@ -1518,15 +1535,19 @@ class Language:
config = util.copy_config(config) config = util.copy_config(config)
orig_pipeline = config.pop("components", {}) orig_pipeline = config.pop("components", {})
config["components"] = {} config["components"] = {}
resolved, filled = registry.resolve( if auto_fill:
config, validate=validate, schema=ConfigSchema filled = registry.fill(config, validate=validate, schema=ConfigSchema)
) else:
filled = config
filled["components"] = orig_pipeline filled["components"] = orig_pipeline
config["components"] = orig_pipeline config["components"] = orig_pipeline
create_tokenizer = resolved["nlp"]["tokenizer"] resolved_nlp = registry.resolve(
before_creation = resolved["nlp"]["before_creation"] filled["nlp"], validate=validate, schema=ConfigSchemaNlp
after_creation = resolved["nlp"]["after_creation"] )
after_pipeline_creation = resolved["nlp"]["after_pipeline_creation"] create_tokenizer = resolved_nlp["tokenizer"]
before_creation = resolved_nlp["before_creation"]
after_creation = resolved_nlp["after_creation"]
after_pipeline_creation = resolved_nlp["after_pipeline_creation"]
lang_cls = cls lang_cls = cls
if before_creation is not None: if before_creation is not None:
lang_cls = before_creation(cls) lang_cls = before_creation(cls)
@ -1587,7 +1608,6 @@ class Language:
disabled_pipes = [*config["nlp"]["disabled"], *disable] disabled_pipes = [*config["nlp"]["disabled"], *disable]
nlp._disabled = set(p for p in disabled_pipes if p not in exclude) nlp._disabled = set(p for p in disabled_pipes if p not in exclude)
nlp.config = filled if auto_fill else config nlp.config = filled if auto_fill else config
nlp.resolved = resolved
if after_pipeline_creation is not None: if after_pipeline_creation is not None:
nlp = after_pipeline_creation(nlp) nlp = after_pipeline_creation(nlp)
if not isinstance(nlp, cls): if not isinstance(nlp, cls):

View File

@ -0,0 +1,25 @@
from typing import List, Union, Callable, Tuple
from thinc.types import Ints2d, Doc
from thinc.api import Model, registry
@registry.layers("spacy.FeatureExtractor.v1")
def FeatureExtractor(columns: List[Union[int, str]]) -> Model[List[Doc], List[Ints2d]]:
return Model("extract_features", forward, attrs={"columns": columns})
def forward(model: Model[List[Doc], List[Ints2d]], docs, is_train: bool) -> Tuple[List[Ints2d], Callable]:
columns = model.attrs["columns"]
features: List[Ints2d] = []
for doc in docs:
if hasattr(doc, "to_array"):
attrs = doc.to_array(columns)
else:
attrs = doc.doc.to_array(columns)[doc.start : doc.end]
if attrs.ndim == 1:
attrs = attrs.reshape((attrs.shape[0], 1))
features.append(model.ops.asarray2i(attrs, dtype="uint64"))
backprop: Callable[[List[Ints2d]], List] = lambda d_features: []
return features, backprop

View File

@ -3,12 +3,13 @@ from thinc.api import Model, reduce_mean, Linear, list2ragged, Logistic
from thinc.api import chain, concatenate, clone, Dropout, ParametricAttention from thinc.api import chain, concatenate, clone, Dropout, ParametricAttention
from thinc.api import SparseLinear, Softmax, softmax_activation, Maxout, reduce_sum from thinc.api import SparseLinear, Softmax, softmax_activation, Maxout, reduce_sum
from thinc.api import HashEmbed, with_array, with_cpu, uniqued from thinc.api import HashEmbed, with_array, with_cpu, uniqued
from thinc.api import Relu, residual, expand_window, FeatureExtractor from thinc.api import Relu, residual, expand_window
from ...attrs import ID, ORTH, PREFIX, SUFFIX, SHAPE, LOWER from ...attrs import ID, ORTH, PREFIX, SUFFIX, SHAPE, LOWER
from ...util import registry from ...util import registry
from ..extract_ngrams import extract_ngrams from ..extract_ngrams import extract_ngrams
from ..staticvectors import StaticVectors from ..staticvectors import StaticVectors
from ..featureextractor import FeatureExtractor
@registry.architectures.register("spacy.TextCatCNN.v1") @registry.architectures.register("spacy.TextCatCNN.v1")

View File

@ -1,14 +1,14 @@
from typing import Optional, List from typing import Optional, List
from thinc.api import chain, clone, concatenate, with_array, with_padded
from thinc.api import Model, noop, list2ragged, ragged2list
from thinc.api import FeatureExtractor, HashEmbed
from thinc.api import expand_window, residual, Maxout, Mish, PyTorchLSTM
from thinc.types import Floats2d from thinc.types import Floats2d
from thinc.api import chain, clone, concatenate, with_array, with_padded
from thinc.api import Model, noop, list2ragged, ragged2list, HashEmbed
from thinc.api import expand_window, residual, Maxout, Mish, PyTorchLSTM
from ...tokens import Doc from ...tokens import Doc
from ...util import registry from ...util import registry
from ...ml import _character_embed from ...ml import _character_embed
from ..staticvectors import StaticVectors from ..staticvectors import StaticVectors
from ..featureextractor import FeatureExtractor
from ...pipeline.tok2vec import Tok2VecListener from ...pipeline.tok2vec import Tok2VecListener
from ...attrs import ORTH, NORM, PREFIX, SUFFIX, SHAPE from ...attrs import ORTH, NORM, PREFIX, SUFFIX, SHAPE

View File

@ -29,7 +29,8 @@ cdef class Morphology:
FEATURE_SEP = "|" FEATURE_SEP = "|"
FIELD_SEP = "=" FIELD_SEP = "="
VALUE_SEP = "," VALUE_SEP = ","
EMPTY_MORPH = "_" # not an empty string so that the PreshMap key is not 0 # not an empty string so that the PreshMap key is not 0
EMPTY_MORPH = symbols.NAMES[symbols._]
def __init__(self, StringStore strings): def __init__(self, StringStore strings):
self.mem = Pool() self.mem = Pool()

View File

@ -78,7 +78,7 @@ def get_attr_info(nlp: "Language", attr: str) -> Dict[str, List[str]]:
def analyze_pipes( def analyze_pipes(
nlp: "Language", *, keys: List[str] = DEFAULT_KEYS, nlp: "Language", *, keys: List[str] = DEFAULT_KEYS
) -> Dict[str, Union[List[str], Dict[str, List[str]]]]: ) -> Dict[str, Union[List[str], Dict[str, List[str]]]]:
"""Print a formatted summary for the current nlp object's pipeline. Shows """Print a formatted summary for the current nlp object's pipeline. Shows
a table with the pipeline components and why they assign and require, as a table with the pipeline components and why they assign and require, as

View File

@ -82,8 +82,7 @@ class AttributeRuler(Pipe):
matches = self.matcher(doc, allow_missing=True) matches = self.matcher(doc, allow_missing=True)
# Sort by the attribute ID, so that later rules have precendence # Sort by the attribute ID, so that later rules have precendence
matches = [ matches = [
(_parse_key(self.vocab.strings[m_id]), m_id, s, e) (int(self.vocab.strings[m_id]), m_id, s, e) for m_id, s, e in matches
for m_id, s, e in matches
] ]
matches.sort() matches.sort()
for attr_id, match_id, start, end in matches: for attr_id, match_id, start, end in matches:
@ -93,7 +92,7 @@ class AttributeRuler(Pipe):
try: try:
# The index can be negative, which makes it annoying to do # The index can be negative, which makes it annoying to do
# the boundscheck. Let Span do it instead. # the boundscheck. Let Span do it instead.
token = span[index] token = span[index] # noqa: F841
except IndexError: except IndexError:
# The original exception is just our conditional logic, so we # The original exception is just our conditional logic, so we
# raise from. # raise from.
@ -103,7 +102,7 @@ class AttributeRuler(Pipe):
span=[t.text for t in span], span=[t.text for t in span],
index=index, index=index,
) )
) from None ) from None
set_token_attrs(span[index], attrs) set_token_attrs(span[index], attrs)
return doc return doc
@ -184,7 +183,7 @@ class AttributeRuler(Pipe):
""" """
# We need to make a string here, because otherwise the ID we pass back # We need to make a string here, because otherwise the ID we pass back
# will be interpreted as the hash of a string, rather than an ordinal. # will be interpreted as the hash of a string, rather than an ordinal.
key = _make_key(len(self.attrs)) key = str(len(self.attrs))
self.matcher.add(self.vocab.strings.add(key), patterns) self.matcher.add(self.vocab.strings.add(key), patterns)
self._attrs_unnormed.append(attrs) self._attrs_unnormed.append(attrs)
attrs = normalize_token_attrs(self.vocab, attrs) attrs = normalize_token_attrs(self.vocab, attrs)
@ -209,7 +208,7 @@ class AttributeRuler(Pipe):
all_patterns = [] all_patterns = []
for i in range(len(self.attrs)): for i in range(len(self.attrs)):
p = {} p = {}
p["patterns"] = self.matcher.get(_make_key(i))[1] p["patterns"] = self.matcher.get(str(i))[1]
p["attrs"] = self._attrs_unnormed[i] p["attrs"] = self._attrs_unnormed[i]
p["index"] = self.indices[i] p["index"] = self.indices[i]
all_patterns.append(p) all_patterns.append(p)
@ -313,12 +312,6 @@ class AttributeRuler(Pipe):
return self return self
def _make_key(n_attr):
return f"attr_rule_{n_attr}"
def _parse_key(key):
return int(key.rsplit("_", 1)[1])
def _split_morph_attrs(attrs): def _split_morph_attrs(attrs):
"""Split entries from a tag map or morph rules dict into to two dicts, one """Split entries from a tag map or morph rules dict into to two dicts, one

View File

@ -126,13 +126,13 @@ cdef class DependencyParser(Parser):
def add_multitask_objective(self, mt_component): def add_multitask_objective(self, mt_component):
self._multitasks.append(mt_component) self._multitasks.append(mt_component)
def init_multitask_objectives(self, get_examples, pipeline, sgd=None, **cfg): def init_multitask_objectives(self, get_examples, nlp=None, **cfg):
# TODO: transfer self.model.get_ref("tok2vec") to the multitask's model ? # TODO: transfer self.model.get_ref("tok2vec") to the multitask's model ?
for labeller in self._multitasks: for labeller in self._multitasks:
labeller.model.set_dim("nO", len(self.labels)) labeller.model.set_dim("nO", len(self.labels))
if labeller.model.has_ref("output_layer"): if labeller.model.has_ref("output_layer"):
labeller.model.get_ref("output_layer").set_dim("nO", len(self.labels)) labeller.model.get_ref("output_layer").set_dim("nO", len(self.labels))
labeller.begin_training(get_examples, pipeline=pipeline, sgd=sgd) labeller.initialize(get_examples, nlp=nlp)
@property @property
def labels(self): def labels(self):

View File

@ -1,5 +1,5 @@
from itertools import islice from itertools import islice
from typing import Optional, Iterable, Callable, Dict, Iterator, Union, List, Tuple from typing import Optional, Iterable, Callable, Dict, Iterator, Union, List
from pathlib import Path from pathlib import Path
import srsly import srsly
import random import random
@ -140,26 +140,20 @@ class EntityLinker(Pipe):
if len(self.kb) == 0: if len(self.kb) == 0:
raise ValueError(Errors.E139.format(name=self.name)) raise ValueError(Errors.E139.format(name=self.name))
def begin_training( def initialize(
self, self,
get_examples: Callable[[], Iterable[Example]], get_examples: Callable[[], Iterable[Example]],
*, *,
pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None, nlp: Optional[Language] = None,
sgd: Optional[Optimizer] = None, ):
) -> Optimizer:
"""Initialize the pipe for training, using a representative set """Initialize the pipe for training, using a representative set
of data examples. of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects. returns a representative sample of gold-standard Example objects.
pipeline (List[Tuple[str, Callable]]): Optional list of pipeline nlp (Language): The current nlp object the component is part of.
components that this component is part of. Corresponds to
nlp.pipeline.
sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://nightly.spacy.io/api/entitylinker#begin_training DOCS: https://nightly.spacy.io/api/entitylinker#initialize
""" """
self._ensure_examples(get_examples) self._ensure_examples(get_examples)
self._require_kb() self._require_kb()
@ -174,9 +168,6 @@ class EntityLinker(Pipe):
self.model.initialize( self.model.initialize(
X=doc_sample, Y=self.model.ops.asarray(vector_sample, dtype="float32") X=doc_sample, Y=self.model.ops.asarray(vector_sample, dtype="float32")
) )
if sgd is None:
sgd = self.create_optimizer()
return sgd
def update( def update(
self, self,

View File

@ -67,7 +67,7 @@ class Lemmatizer(Pipe):
return {} return {}
@classmethod @classmethod
def load_lookups(cls, lang: str, mode: str, lookups: Optional[Lookups],) -> Lookups: def load_lookups(cls, lang: str, mode: str, lookups: Optional[Lookups]) -> Lookups:
"""Load and validate lookups tables. If the provided lookups is None, """Load and validate lookups tables. If the provided lookups is None,
load the default lookups tables according to the language and mode load the default lookups tables according to the language and mode
settings. Confirm that all required tables for the language and mode settings. Confirm that all required tables for the language and mode

View File

@ -1,5 +1,5 @@
# cython: infer_types=True, profile=True, binding=True # cython: infer_types=True, profile=True, binding=True
from typing import Optional from typing import Optional, Union, Dict
import srsly import srsly
from thinc.api import SequenceCategoricalCrossentropy, Model, Config from thinc.api import SequenceCategoricalCrossentropy, Model, Config
from itertools import islice from itertools import islice
@ -101,6 +101,11 @@ class Morphologizer(Tagger):
"""RETURNS (Tuple[str]): The labels currently added to the component.""" """RETURNS (Tuple[str]): The labels currently added to the component."""
return tuple(self.cfg["labels_morph"].keys()) return tuple(self.cfg["labels_morph"].keys())
@property
def label_data(self) -> Dict[str, Dict[str, Union[str, float, int, None]]]:
"""A dictionary with all labels data."""
return {"morph": self.cfg["labels_morph"], "pos": self.cfg["labels_pos"]}
def add_label(self, label): def add_label(self, label):
"""Add a new label to the pipe. """Add a new label to the pipe.
@ -129,20 +134,15 @@ class Morphologizer(Tagger):
self.cfg["labels_pos"][norm_label] = POS_IDS[pos] self.cfg["labels_pos"][norm_label] = POS_IDS[pos]
return 1 return 1
def begin_training(self, get_examples, *, pipeline=None, sgd=None): def initialize(self, get_examples, *, nlp=None):
"""Initialize the pipe for training, using a representative set """Initialize the pipe for training, using a representative set
of data examples. of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects. returns a representative sample of gold-standard Example objects.
pipeline (List[Tuple[str, Callable]]): Optional list of pipeline nlp (Language): The current nlp object the component is part of.
components that this component is part of. Corresponds to
nlp.pipeline.
sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://nightly.spacy.io/api/morphologizer#begin_training DOCS: https://nightly.spacy.io/api/morphologizer#initialize
""" """
self._ensure_examples(get_examples) self._ensure_examples(get_examples)
# First, fetch all labels from the data # First, fetch all labels from the data
@ -178,9 +178,6 @@ class Morphologizer(Tagger):
assert len(doc_sample) > 0, Errors.E923.format(name=self.name) assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
assert len(label_sample) > 0, Errors.E923.format(name=self.name) assert len(label_sample) > 0, Errors.E923.format(name=self.name)
self.model.initialize(X=doc_sample, Y=label_sample) self.model.initialize(X=doc_sample, Y=label_sample)
if sgd is None:
sgd = self.create_optimizer()
return sgd
def set_annotations(self, docs, batch_tag_ids): def set_annotations(self, docs, batch_tag_ids):
"""Modify a batch of documents, using pre-computed scores. """Modify a batch of documents, using pre-computed scores.

View File

@ -81,7 +81,7 @@ class MultitaskObjective(Tagger):
def set_annotations(self, docs, dep_ids): def set_annotations(self, docs, dep_ids):
pass pass
def begin_training(self, get_examples, pipeline=None, sgd=None): def initialize(self, get_examples, nlp=None):
if not hasattr(get_examples, "__call__"): if not hasattr(get_examples, "__call__"):
err = Errors.E930.format(name="MultitaskObjective", obj=type(get_examples)) err = Errors.E930.format(name="MultitaskObjective", obj=type(get_examples))
raise ValueError(err) raise ValueError(err)
@ -91,9 +91,6 @@ class MultitaskObjective(Tagger):
if label is not None and label not in self.labels: if label is not None and label not in self.labels:
self.labels[label] = len(self.labels) self.labels[label] = len(self.labels)
self.model.initialize() # TODO: fix initialization by defining X and Y self.model.initialize() # TODO: fix initialization by defining X and Y
if sgd is None:
sgd = self.create_optimizer()
return sgd
def predict(self, docs): def predict(self, docs):
tokvecs = self.model.get_ref("tok2vec")(docs) tokvecs = self.model.get_ref("tok2vec")(docs)
@ -177,13 +174,10 @@ class ClozeMultitask(Pipe):
def set_annotations(self, docs, dep_ids): def set_annotations(self, docs, dep_ids):
pass pass
def begin_training(self, get_examples, pipeline=None, sgd=None): def initialize(self, get_examples, nlp=None):
self.model.initialize() # TODO: fix initialization by defining X and Y self.model.initialize() # TODO: fix initialization by defining X and Y
X = self.model.ops.alloc((5, self.model.get_ref("tok2vec").get_dim("nO"))) X = self.model.ops.alloc((5, self.model.get_ref("tok2vec").get_dim("nO")))
self.model.output_layer.begin_training(X) self.model.output_layer.initialize(X)
if sgd is None:
sgd = self.create_optimizer()
return sgd
def predict(self, docs): def predict(self, docs):
tokvecs = self.model.get_ref("tok2vec")(docs) tokvecs = self.model.get_ref("tok2vec")(docs)

View File

@ -96,14 +96,14 @@ cdef class EntityRecognizer(Parser):
"""Register another component as a multi-task objective. Experimental.""" """Register another component as a multi-task objective. Experimental."""
self._multitasks.append(mt_component) self._multitasks.append(mt_component)
def init_multitask_objectives(self, get_examples, pipeline, sgd=None, **cfg): def init_multitask_objectives(self, get_examples, nlp=None, **cfg):
"""Setup multi-task objective components. Experimental and internal.""" """Setup multi-task objective components. Experimental and internal."""
# TODO: transfer self.model.get_ref("tok2vec") to the multitask's model ? # TODO: transfer self.model.get_ref("tok2vec") to the multitask's model ?
for labeller in self._multitasks: for labeller in self._multitasks:
labeller.model.set_dim("nO", len(self.labels)) labeller.model.set_dim("nO", len(self.labels))
if labeller.model.has_ref("output_layer"): if labeller.model.has_ref("output_layer"):
labeller.model.get_ref("output_layer").set_dim("nO", len(self.labels)) labeller.model.get_ref("output_layer").set_dim("nO", len(self.labels))
labeller.begin_training(get_examples, pipeline=pipeline) labeller.initialize(get_examples, nlp=nlp)
@property @property
def labels(self): def labels(self):

View File

@ -1,4 +1,5 @@
# cython: infer_types=True, profile=True # cython: infer_types=True, profile=True
from typing import Optional, Tuple
import srsly import srsly
from thinc.api import set_dropout_rate, Model from thinc.api import set_dropout_rate, Model
@ -32,6 +33,17 @@ cdef class Pipe:
self.name = name self.name = name
self.cfg = dict(cfg) self.cfg = dict(cfg)
@property
def labels(self) -> Optional[Tuple[str]]:
return []
@property
def label_data(self):
"""Optional JSON-serializable data that would be sufficient to recreate
the label set if provided to the `pipe.initialize()` method.
"""
return None
def __call__(self, Doc doc): def __call__(self, Doc doc):
"""Apply the pipe to one document. The document is modified in place, """Apply the pipe to one document. The document is modified in place,
and returned. This usually happens under the hood when the nlp object and returned. This usually happens under the hood when the nlp object
@ -183,7 +195,7 @@ cdef class Pipe:
""" """
return util.create_default_optimizer() return util.create_default_optimizer()
def begin_training(self, get_examples, *, pipeline=None, sgd=None): def initialize(self, get_examples, *, nlp=None):
"""Initialize the pipe for training, using data examples if available. """Initialize the pipe for training, using data examples if available.
This method needs to be implemented by each Pipe component, This method needs to be implemented by each Pipe component,
ensuring the internal model (if available) is initialized properly ensuring the internal model (if available) is initialized properly
@ -191,16 +203,11 @@ cdef class Pipe:
get_examples (Callable[[], Iterable[Example]]): Function that get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects. returns a representative sample of gold-standard Example objects.
pipeline (List[Tuple[str, Callable]]): Optional list of pipeline nlp (Language): The current nlp object the component is part of.
components that this component is part of. Corresponds to
nlp.pipeline.
sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://nightly.spacy.io/api/pipe#begin_training DOCS: https://nightly.spacy.io/api/pipe#initialize
""" """
raise NotImplementedError(Errors.E931.format(method="add_label", name=self.name)) pass
def _ensure_examples(self, get_examples): def _ensure_examples(self, get_examples):
if get_examples is None or not hasattr(get_examples, "__call__"): if get_examples is None or not hasattr(get_examples, "__call__"):

View File

@ -58,7 +58,7 @@ class Sentencizer(Pipe):
else: else:
self.punct_chars = set(self.default_punct_chars) self.punct_chars = set(self.default_punct_chars)
def begin_training(self, get_examples, pipeline=None, sgd=None): def initialize(self, get_examples, nlp=None):
pass pass
def __call__(self, doc): def __call__(self, doc):

View File

@ -71,6 +71,10 @@ class SentenceRecognizer(Tagger):
# are 0 # are 0
return tuple(["I", "S"]) return tuple(["I", "S"])
@property
def label_data(self):
return self.labels
def set_annotations(self, docs, batch_tag_ids): def set_annotations(self, docs, batch_tag_ids):
"""Modify a batch of documents, using pre-computed scores. """Modify a batch of documents, using pre-computed scores.
@ -124,20 +128,15 @@ class SentenceRecognizer(Tagger):
raise ValueError("nan value when computing loss") raise ValueError("nan value when computing loss")
return float(loss), d_scores return float(loss), d_scores
def begin_training(self, get_examples, *, pipeline=None, sgd=None): def initialize(self, get_examples, *, nlp=None):
"""Initialize the pipe for training, using a representative set """Initialize the pipe for training, using a representative set
of data examples. of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects. returns a representative sample of gold-standard Example objects.
pipeline (List[Tuple[str, Callable]]): Optional list of pipeline nlp (Language): The current nlp object the component is part of.
components that this component is part of. Corresponds to
nlp.pipeline.
sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://nightly.spacy.io/api/sentencerecognizer#begin_training DOCS: https://nightly.spacy.io/api/sentencerecognizer#initialize
""" """
self._ensure_examples(get_examples) self._ensure_examples(get_examples)
doc_sample = [] doc_sample = []
@ -151,9 +150,6 @@ class SentenceRecognizer(Tagger):
assert len(doc_sample) > 0, Errors.E923.format(name=self.name) assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
assert len(label_sample) > 0, Errors.E923.format(name=self.name) assert len(label_sample) > 0, Errors.E923.format(name=self.name)
self.model.initialize(X=doc_sample, Y=label_sample) self.model.initialize(X=doc_sample, Y=label_sample)
if sgd is None:
sgd = self.create_optimizer()
return sgd
def add_label(self, label, values=None): def add_label(self, label, values=None):
raise NotImplementedError raise NotImplementedError

View File

@ -90,6 +90,11 @@ class Tagger(Pipe):
""" """
return tuple(self.cfg["labels"]) return tuple(self.cfg["labels"])
@property
def label_data(self):
"""Data about the labels currently added to the component."""
return tuple(self.cfg["labels"])
def __call__(self, doc): def __call__(self, doc):
"""Apply the pipe to a Doc. """Apply the pipe to a Doc.
@ -256,31 +261,33 @@ class Tagger(Pipe):
raise ValueError("nan value when computing loss") raise ValueError("nan value when computing loss")
return float(loss), d_scores return float(loss), d_scores
def begin_training(self, get_examples, *, pipeline=None, sgd=None): def initialize(self, get_examples, *, nlp=None, labels=None):
"""Initialize the pipe for training, using a representative set """Initialize the pipe for training, using a representative set
of data examples. of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.. returns a representative sample of gold-standard Example objects..
pipeline (List[Tuple[str, Callable]]): Optional list of pipeline nlp (Language): The current nlp object the component is part of.
components that this component is part of. Corresponds to labels: The labels to add to the component, typically generated by the
nlp.pipeline. `init labels` command. If no labels are provided, the get_examples
sgd (thinc.api.Optimizer): Optional optimizer. Will be created with callback is used to extract the labels from the data.
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://nightly.spacy.io/api/tagger#begin_training DOCS: https://nightly.spacy.io/api/tagger#initialize
""" """
self._ensure_examples(get_examples) self._ensure_examples(get_examples)
if labels is not None:
for tag in labels:
self.add_label(tag)
else:
tags = set()
for example in get_examples():
for token in example.y:
if token.tag_:
tags.add(token.tag_)
for tag in sorted(tags):
self.add_label(tag)
doc_sample = [] doc_sample = []
label_sample = [] label_sample = []
tags = set()
for example in get_examples():
for token in example.y:
if token.tag_:
tags.add(token.tag_)
for tag in sorted(tags):
self.add_label(tag)
for example in islice(get_examples(), 10): for example in islice(get_examples(), 10):
doc_sample.append(example.x) doc_sample.append(example.x)
gold_tags = example.get_aligned("TAG", as_string=True) gold_tags = example.get_aligned("TAG", as_string=True)
@ -289,9 +296,6 @@ class Tagger(Pipe):
assert len(doc_sample) > 0, Errors.E923.format(name=self.name) assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
assert len(label_sample) > 0, Errors.E923.format(name=self.name) assert len(label_sample) > 0, Errors.E923.format(name=self.name)
self.model.initialize(X=doc_sample, Y=label_sample) self.model.initialize(X=doc_sample, Y=label_sample)
if sgd is None:
sgd = self.create_optimizer()
return sgd
def add_label(self, label): def add_label(self, label):
"""Add a new label to the pipe. """Add a new label to the pipe.

View File

@ -154,8 +154,16 @@ class TextCategorizer(Pipe):
@labels.setter @labels.setter
def labels(self, value: List[str]) -> None: def labels(self, value: List[str]) -> None:
# TODO: This really shouldn't be here. I had a look and I added it when
# I added the labels property, but it's pretty nasty to have this, and
# will lead to problems.
self.cfg["labels"] = tuple(value) self.cfg["labels"] = tuple(value)
@property
def label_data(self) -> List[str]:
"""RETURNS (List[str]): Information about the component's labels."""
return self.labels
def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]: def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
"""Apply the pipe to a stream of documents. This usually happens under """Apply the pipe to a stream of documents. This usually happens under
the hood when the nlp object is called on a text and all components are the hood when the nlp object is called on a text and all components are
@ -334,43 +342,40 @@ class TextCategorizer(Pipe):
self.labels = tuple(list(self.labels) + [label]) self.labels = tuple(list(self.labels) + [label])
return 1 return 1
def begin_training( def initialize(
self, self,
get_examples: Callable[[], Iterable[Example]], get_examples: Callable[[], Iterable[Example]],
*, *,
pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None, nlp: Optional[Language] = None,
sgd: Optional[Optimizer] = None, labels: Optional[Dict] = None,
) -> Optimizer: ):
"""Initialize the pipe for training, using a representative set """Initialize the pipe for training, using a representative set
of data examples. of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects. returns a representative sample of gold-standard Example objects.
pipeline (List[Tuple[str, Callable]]): Optional list of pipeline nlp (Language): The current nlp object the component is part of.
components that this component is part of. Corresponds to labels: The labels to add to the component, typically generated by the
nlp.pipeline. `init labels` command. If no labels are provided, the get_examples
sgd (thinc.api.Optimizer): Optional optimizer. Will be created with callback is used to extract the labels from the data.
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://nightly.spacy.io/api/textcategorizer#begin_training DOCS: https://nightly.spacy.io/api/textcategorizer#initialize
""" """
self._ensure_examples(get_examples) self._ensure_examples(get_examples)
subbatch = [] # Select a subbatch of examples to initialize the model if labels is None:
for example in islice(get_examples(), 10): for example in get_examples():
if len(subbatch) < 2: for cat in example.y.cats:
subbatch.append(example) self.add_label(cat)
for cat in example.y.cats: else:
self.add_label(cat) for label in labels:
self.add_label(label)
subbatch = list(islice(get_examples(), 10))
doc_sample = [eg.reference for eg in subbatch] doc_sample = [eg.reference for eg in subbatch]
label_sample, _ = self._examples_to_truth(subbatch) label_sample, _ = self._examples_to_truth(subbatch)
self._require_labels() self._require_labels()
assert len(doc_sample) > 0, Errors.E923.format(name=self.name) assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
assert len(label_sample) > 0, Errors.E923.format(name=self.name) assert len(label_sample) > 0, Errors.E923.format(name=self.name)
self.model.initialize(X=doc_sample, Y=label_sample) self.model.initialize(X=doc_sample, Y=label_sample)
if sgd is None:
sgd = self.create_optimizer()
return sgd
def score(self, examples: Iterable[Example], **kwargs) -> Dict[str, Any]: def score(self, examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
"""Score a batch of examples. """Score a batch of examples.

View File

@ -1,4 +1,4 @@
from typing import Iterator, Sequence, Iterable, Optional, Dict, Callable, List, Tuple from typing import Iterator, Sequence, Iterable, Optional, Dict, Callable, List
from thinc.api import Model, set_dropout_rate, Optimizer, Config from thinc.api import Model, set_dropout_rate, Optimizer, Config
from itertools import islice from itertools import islice
@ -203,26 +203,20 @@ class Tok2Vec(Pipe):
def get_loss(self, examples, scores) -> None: def get_loss(self, examples, scores) -> None:
pass pass
def begin_training( def initialize(
self, self,
get_examples: Callable[[], Iterable[Example]], get_examples: Callable[[], Iterable[Example]],
*, *,
pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None, nlp: Optional[Language] = None,
sgd: Optional[Optimizer] = None,
): ):
"""Initialize the pipe for training, using a representative set """Initialize the pipe for training, using a representative set
of data examples. of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects. returns a representative sample of gold-standard Example objects.
pipeline (List[Tuple[str, Callable]]): Optional list of pipeline nlp (Language): The current nlp object the component is part of.
components that this component is part of. Corresponds to
nlp.pipeline.
sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://nightly.spacy.io/api/tok2vec#begin_training DOCS: https://nightly.spacy.io/api/tok2vec#initialize
""" """
self._ensure_examples(get_examples) self._ensure_examples(get_examples)
doc_sample = [] doc_sample = []

View File

@ -1,4 +1,4 @@
# cython: infer_types=True, cdivision=True, boundscheck=False # cython: infer_types=True, cdivision=True, boundscheck=False, binding=True
from __future__ import print_function from __future__ import print_function
from cymem.cymem cimport Pool from cymem.cymem cimport Pool
cimport numpy as np cimport numpy as np
@ -7,6 +7,7 @@ from libcpp.vector cimport vector
from libc.string cimport memset from libc.string cimport memset
from libc.stdlib cimport calloc, free from libc.stdlib cimport calloc, free
import random import random
from typing import Optional
import srsly import srsly
from thinc.api import set_dropout_rate from thinc.api import set_dropout_rate
@ -95,6 +96,10 @@ cdef class Parser(Pipe):
class_names = [self.moves.get_class_name(i) for i in range(self.moves.n_moves)] class_names = [self.moves.get_class_name(i) for i in range(self.moves.n_moves)]
return class_names return class_names
@property
def label_data(self):
return self.moves.labels
@property @property
def tok2vec(self): def tok2vec(self):
"""Return the embedding and convolutional layer of the model.""" """Return the embedding and convolutional layer of the model."""
@ -354,7 +359,7 @@ cdef class Parser(Pipe):
# If all weights for an output are 0 in the original model, don't # If all weights for an output are 0 in the original model, don't
# supervise that output. This allows us to add classes. # supervise that output. This allows us to add classes.
loss += (d_scores**2).sum() loss += (d_scores**2).sum()
backprop(d_scores, sgd=sgd) backprop(d_scores)
# Follow the predicted action # Follow the predicted action
self.transition_states(states, guesses) self.transition_states(states, guesses)
states = [state for state in states if not state.is_final()] states = [state for state in states if not state.is_final()]
@ -405,18 +410,20 @@ cdef class Parser(Pipe):
def set_output(self, nO): def set_output(self, nO):
self.model.attrs["resize_output"](self.model, nO) self.model.attrs["resize_output"](self.model, nO)
def begin_training(self, get_examples, pipeline=None, sgd=None, **kwargs): def initialize(self, get_examples, nlp=None, labels=None):
self._ensure_examples(get_examples) self._ensure_examples(get_examples)
self.cfg.update(kwargs)
lexeme_norms = self.vocab.lookups.get_table("lexeme_norm", {}) lexeme_norms = self.vocab.lookups.get_table("lexeme_norm", {})
if len(lexeme_norms) == 0 and self.vocab.lang in util.LEXEME_NORM_LANGS: if len(lexeme_norms) == 0 and self.vocab.lang in util.LEXEME_NORM_LANGS:
langs = ", ".join(util.LEXEME_NORM_LANGS) langs = ", ".join(util.LEXEME_NORM_LANGS)
util.logger.debug(Warnings.W033.format(model="parser or NER", langs=langs)) util.logger.debug(Warnings.W033.format(model="parser or NER", langs=langs))
actions = self.moves.get_actions( if labels is not None:
examples=get_examples(), actions = dict(labels)
min_freq=self.cfg['min_action_freq'], else:
learn_tokens=self.cfg["learn_tokens"] actions = self.moves.get_actions(
) examples=get_examples(),
min_freq=self.cfg['min_action_freq'],
learn_tokens=self.cfg["learn_tokens"]
)
for action, labels in self.moves.labels.items(): for action, labels in self.moves.labels.items():
actions.setdefault(action, {}) actions.setdefault(action, {})
for label, freq in labels.items(): for label, freq in labels.items():
@ -425,11 +432,9 @@ cdef class Parser(Pipe):
self.moves.initialize_actions(actions) self.moves.initialize_actions(actions)
# make sure we resize so we have an appropriate upper layer # make sure we resize so we have an appropriate upper layer
self._resize() self._resize()
if sgd is None:
sgd = self.create_optimizer()
doc_sample = [] doc_sample = []
if pipeline is not None: if nlp is not None:
for name, component in pipeline: for name, component in nlp.pipeline:
if component is self: if component is self:
break break
if hasattr(component, "pipe"): if hasattr(component, "pipe"):
@ -441,9 +446,8 @@ cdef class Parser(Pipe):
doc_sample.append(example.predicted) doc_sample.append(example.predicted)
assert len(doc_sample) > 0, Errors.E923.format(name=self.name) assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
self.model.initialize(doc_sample) self.model.initialize(doc_sample)
if pipeline is not None: if nlp is not None:
self.init_multitask_objectives(get_examples, pipeline, sgd=sgd, **self.cfg) self.init_multitask_objectives(get_examples, nlp.pipeline)
return sgd
def to_disk(self, path, exclude=tuple()): def to_disk(self, path, exclude=tuple()):
serializers = { serializers = {

View File

@ -1,14 +1,17 @@
from typing import Dict, List, Union, Optional, Any, Callable, Type, Tuple from typing import Dict, List, Union, Optional, Any, Callable, Type, Tuple
from typing import Iterable, TypeVar, TYPE_CHECKING from typing import Iterable, TypeVar, TYPE_CHECKING
from enum import Enum from enum import Enum
from pydantic import BaseModel, Field, ValidationError, validator from pydantic import BaseModel, Field, ValidationError, validator, create_model
from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool
from pydantic import root_validator from pydantic.main import ModelMetaclass
from thinc.api import Optimizer, ConfigValidationError
from thinc.config import Promise
from collections import defaultdict from collections import defaultdict
from thinc.api import Optimizer import inspect
from .attrs import NAMES from .attrs import NAMES
from .lookups import Lookups from .lookups import Lookups
from .util import is_cython_func
if TYPE_CHECKING: if TYPE_CHECKING:
# This lets us add type hints for mypy etc. without causing circular imports # This lets us add type hints for mypy etc. without causing circular imports
@ -16,10 +19,12 @@ if TYPE_CHECKING:
from .training import Example # noqa: F401 from .training import Example # noqa: F401
# fmt: off
ItemT = TypeVar("ItemT") ItemT = TypeVar("ItemT")
Batcher = Callable[[Iterable[ItemT]], Iterable[List[ItemT]]] Batcher = Union[Callable[[Iterable[ItemT]], Iterable[List[ItemT]]], Promise]
Reader = Callable[["Language", str], Iterable["Example"]] Reader = Union[Callable[["Language", str], Iterable["Example"]], Promise]
Logger = Callable[["Language"], Tuple[Callable[[Dict[str, Any]], None], Callable]] Logger = Union[Callable[["Language"], Tuple[Callable[[Dict[str, Any]], None], Callable]], Promise]
# fmt: on
def validate(schema: Type[BaseModel], obj: Dict[str, Any]) -> List[str]: def validate(schema: Type[BaseModel], obj: Dict[str, Any]) -> List[str]:
@ -41,6 +46,96 @@ def validate(schema: Type[BaseModel], obj: Dict[str, Any]) -> List[str]:
return [f"[{loc}] {', '.join(msg)}" for loc, msg in data.items()] return [f"[{loc}] {', '.join(msg)}" for loc, msg in data.items()]
# Initialization
class ArgSchemaConfig:
extra = "forbid"
arbitrary_types_allowed = True
class ArgSchemaConfigExtra:
extra = "forbid"
arbitrary_types_allowed = True
def get_arg_model(
func: Callable,
*,
exclude: Iterable[str] = tuple(),
name: str = "ArgModel",
strict: bool = True,
) -> ModelMetaclass:
"""Generate a pydantic model for function arguments.
func (Callable): The function to generate the schema for.
exclude (Iterable[str]): Parameter names to ignore.
name (str): Name of created model class.
strict (bool): Don't allow extra arguments if no variable keyword arguments
are allowed on the function.
RETURNS (ModelMetaclass): A pydantic model.
"""
sig_args = {}
try:
sig = inspect.signature(func)
except ValueError:
# Typically happens if the method is part of a Cython module without
# binding=True. Here we just use an empty model that allows everything.
return create_model(name, __config__=ArgSchemaConfigExtra)
has_variable = False
for param in sig.parameters.values():
if param.name in exclude:
continue
if param.kind == param.VAR_KEYWORD:
# The function allows variable keyword arguments so we shouldn't
# include **kwargs etc. in the schema and switch to non-strict
# mode and pass through all other values
has_variable = True
continue
# If no annotation is specified assume it's anything
annotation = param.annotation if param.annotation != param.empty else Any
# If no default value is specified assume that it's required. Cython
# functions/methods will have param.empty for default value None so we
# need to treat them differently
default_empty = None if is_cython_func(func) else ...
default = param.default if param.default != param.empty else default_empty
sig_args[param.name] = (annotation, default)
is_strict = strict and not has_variable
sig_args["__config__"] = ArgSchemaConfig if is_strict else ArgSchemaConfigExtra
return create_model(name, **sig_args)
def validate_init_settings(
func: Callable,
settings: Dict[str, Any],
*,
section: Optional[str] = None,
name: str = "",
exclude: Iterable[str] = ("get_examples", "nlp"),
) -> Dict[str, Any]:
"""Validate initialization settings against the expected arguments in
the method signature. Will parse values if possible (e.g. int to string)
and return the updated settings dict. Will raise a ConfigValidationError
if types don't match or required values are missing.
func (Callable): The initialize method of a given component etc.
settings (Dict[str, Any]): The settings from the repsective [initialize] block.
section (str): Initialize section, for error message.
name (str): Name of the block in the section.
exclude (Iterable[str]): Parameter names to exclude from schema.
RETURNS (Dict[str, Any]): The validated settings.
"""
schema = get_arg_model(func, exclude=exclude, name="InitArgModel")
try:
return schema(**settings).dict()
except ValidationError as e:
block = "initialize" if not section else f"initialize.{section}"
title = f"Error validating initialization settings in [{block}]"
raise ConfigValidationError(
title=title, errors=e.errors(), config=settings, parent=name
) from None
# Matcher token patterns # Matcher token patterns
@ -202,8 +297,6 @@ class ModelMetaSchema(BaseModel):
class ConfigSchemaTraining(BaseModel): class ConfigSchemaTraining(BaseModel):
# fmt: off # fmt: off
vectors: Optional[StrictStr] = Field(..., title="Path to vectors")
lookups: Optional[Lookups] = Field(..., title="Vocab lookups")
dev_corpus: StrictStr = Field(..., title="Path in the config to the dev data") dev_corpus: StrictStr = Field(..., title="Path in the config to the dev data")
train_corpus: StrictStr = Field(..., title="Path in the config to the training data") train_corpus: StrictStr = Field(..., title="Path in the config to the training data")
batcher: Batcher = Field(..., title="Batcher for the training data") batcher: Batcher = Field(..., title="Batcher for the training data")
@ -216,8 +309,6 @@ class ConfigSchemaTraining(BaseModel):
gpu_allocator: Optional[StrictStr] = Field(..., title="Memory allocator when running on GPU") gpu_allocator: Optional[StrictStr] = Field(..., title="Memory allocator when running on GPU")
accumulate_gradient: StrictInt = Field(..., title="Whether to divide the batch up into substeps") accumulate_gradient: StrictInt = Field(..., title="Whether to divide the batch up into substeps")
score_weights: Dict[StrictStr, Optional[Union[StrictFloat, StrictInt]]] = Field(..., title="Scores to report and their weights for selecting final model") score_weights: Dict[StrictStr, Optional[Union[StrictFloat, StrictInt]]] = Field(..., title="Scores to report and their weights for selecting final model")
init_tok2vec: Optional[StrictStr] = Field(..., title="Path to pretrained tok2vec weights")
raw_text: Optional[StrictStr] = Field(default=None, title="Raw text")
optimizer: Optimizer = Field(..., title="The optimizer to use") optimizer: Optimizer = Field(..., title="The optimizer to use")
logger: Logger = Field(..., title="The logger to track training progress") logger: Logger = Field(..., title="The logger to track training progress")
frozen_components: List[str] = Field(..., title="Pipeline components that shouldn't be updated during training") frozen_components: List[str] = Field(..., title="Pipeline components that shouldn't be updated during training")
@ -270,28 +361,42 @@ class ConfigSchemaPretrain(BaseModel):
arbitrary_types_allowed = True arbitrary_types_allowed = True
class ConfigSchemaInit(BaseModel):
# fmt: off
vocab_data: Optional[StrictStr] = Field(..., title="Path to JSON-formatted vocabulary file")
lookups: Optional[Lookups] = Field(..., title="Vocabulary lookups, e.g. lexeme normalization")
vectors: Optional[StrictStr] = Field(..., title="Path to vectors")
init_tok2vec: Optional[StrictStr] = Field(..., title="Path to pretrained tok2vec weights")
tokenizer: Dict[StrictStr, Any] = Field(..., help="Arguments to be passed into Tokenizer.initialize")
components: Dict[StrictStr, Dict[StrictStr, Any]] = Field(..., help="Arguments for Pipe.initialize methods of pipeline components, keyed by component")
# fmt: on
class Config:
extra = "forbid"
arbitrary_types_allowed = True
class ConfigSchema(BaseModel): class ConfigSchema(BaseModel):
training: ConfigSchemaTraining training: ConfigSchemaTraining
nlp: ConfigSchemaNlp nlp: ConfigSchemaNlp
pretraining: Union[ConfigSchemaPretrain, ConfigSchemaPretrainEmpty] = {} pretraining: Union[ConfigSchemaPretrain, ConfigSchemaPretrainEmpty] = {}
components: Dict[str, Dict[str, Any]] components: Dict[str, Dict[str, Any]]
corpora: Dict[str, Reader] corpora: Dict[str, Reader]
initialize: ConfigSchemaInit
@root_validator(allow_reuse=True)
def validate_config(cls, values):
"""Perform additional validation for settings with dependencies."""
pt = values.get("pretraining")
if pt and not isinstance(pt, ConfigSchemaPretrainEmpty):
if pt.objective.get("type") == "vectors" and not values["nlp"].vectors:
err = "Need nlp.vectors if pretraining.objective.type is vectors"
raise ValueError(err)
return values
class Config: class Config:
extra = "allow" extra = "allow"
arbitrary_types_allowed = True arbitrary_types_allowed = True
CONFIG_SCHEMAS = {
"nlp": ConfigSchemaNlp,
"training": ConfigSchemaTraining,
"pretraining": ConfigSchemaPretrain,
"initialize": ConfigSchemaInit,
}
# Project config Schema # Project config Schema

View File

@ -32,9 +32,7 @@ class PRFScore:
def __add__(self, other): def __add__(self, other):
return PRFScore( return PRFScore(
tp=self.tp+other.tp, tp=self.tp + other.tp, fp=self.fp + other.fp, fn=self.fn + other.fn
fp=self.fp+other.fp,
fn=self.fn+other.fn
) )
def score_set(self, cand: set, gold: set) -> None: def score_set(self, cand: set, gold: set) -> None:
@ -485,7 +483,7 @@ class Scorer:
(pred_ent.start_char, pred_ent.end_char), None (pred_ent.start_char, pred_ent.end_char), None
) )
label = gold_span.label_ label = gold_span.label_
if not label in f_per_type: if label not in f_per_type:
f_per_type[label] = PRFScore() f_per_type[label] = PRFScore()
gold = gold_span.kb_id_ gold = gold_span.kb_id_
# only evaluating entities that overlap between gold and pred, # only evaluating entities that overlap between gold and pred,
@ -632,7 +630,6 @@ def get_ner_prf(examples: Iterable[Example]) -> Dict[str, PRFScore]:
continue continue
golds = {(e.label_, e.start, e.end) for e in eg.y.ents} golds = {(e.label_, e.start, e.end) for e in eg.y.ents}
align_x2y = eg.alignment.x2y align_x2y = eg.alignment.x2y
preds = set()
for pred_ent in eg.x.ents: for pred_ent in eg.x.ents:
if pred_ent.label_ not in scores: if pred_ent.label_ not in scores:
scores[pred_ent.label_] = PRFScore() scores[pred_ent.label_] = PRFScore()

View File

@ -466,3 +466,4 @@ cdef enum symbol_t:
ENT_ID ENT_ID
IDX IDX
_

View File

@ -465,6 +465,7 @@ IDS = {
"acl": acl, "acl": acl,
"LAW": LAW, "LAW": LAW,
"MORPH": MORPH, "MORPH": MORPH,
"_": _,
} }

View File

@ -272,22 +272,35 @@ def zh_tokenizer_char():
def zh_tokenizer_jieba(): def zh_tokenizer_jieba():
pytest.importorskip("jieba") pytest.importorskip("jieba")
config = { config = {
"@tokenizers": "spacy.zh.ChineseTokenizer", "nlp": {
"segmenter": "jieba", "tokenizer": {
"@tokenizers": "spacy.zh.ChineseTokenizer",
"segmenter": "jieba",
}
}
} }
nlp = get_lang_class("zh").from_config({"nlp": {"tokenizer": config}}) nlp = get_lang_class("zh").from_config(config)
return nlp.tokenizer return nlp.tokenizer
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def zh_tokenizer_pkuseg(): def zh_tokenizer_pkuseg():
pytest.importorskip("pkuseg") pytest.importorskip("pkuseg")
pytest.importorskip("pickle5")
config = { config = {
"@tokenizers": "spacy.zh.ChineseTokenizer", "nlp": {
"segmenter": "pkuseg", "tokenizer": {
"pkuseg_model": "default", "@tokenizers": "spacy.zh.ChineseTokenizer",
"segmenter": "pkuseg",
}
},
"initialize": {"tokenizer": {
"pkuseg_model": "default",
}
},
} }
nlp = get_lang_class("zh").from_config({"nlp": {"tokenizer": config}}) nlp = get_lang_class("zh").from_config(config)
nlp.initialize()
return nlp.tokenizer return nlp.tokenizer

View File

@ -24,9 +24,9 @@ def test_doc_add_entities_set_ents_iob(en_vocab):
"update_with_oracle_cut_size": 100, "update_with_oracle_cut_size": 100,
} }
cfg = {"model": DEFAULT_NER_MODEL} cfg = {"model": DEFAULT_NER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"] model = registry.resolve(cfg, validate=True)["model"]
ner = EntityRecognizer(en_vocab, model, **config) ner = EntityRecognizer(en_vocab, model, **config)
ner.begin_training(lambda: [_ner_example(ner)]) ner.initialize(lambda: [_ner_example(ner)])
ner(doc) ner(doc)
doc.ents = [("ANIMAL", 3, 4)] doc.ents = [("ANIMAL", 3, 4)]
@ -46,9 +46,9 @@ def test_ents_reset(en_vocab):
"update_with_oracle_cut_size": 100, "update_with_oracle_cut_size": 100,
} }
cfg = {"model": DEFAULT_NER_MODEL} cfg = {"model": DEFAULT_NER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"] model = registry.resolve(cfg, validate=True)["model"]
ner = EntityRecognizer(en_vocab, model, **config) ner = EntityRecognizer(en_vocab, model, **config)
ner.begin_training(lambda: [_ner_example(ner)]) ner.initialize(lambda: [_ner_example(ner)])
ner(doc) ner(doc)
orig_iobs = [t.ent_iob_ for t in doc] orig_iobs = [t.ent_iob_ for t in doc]
doc.ents = list(doc.ents) doc.ents = list(doc.ents)

View File

@ -19,7 +19,7 @@ def test_doc_api_init(en_vocab):
assert [t.is_sent_start for t in doc] == [True, False, True, False] assert [t.is_sent_start for t in doc] == [True, False, True, False]
# heads override sent_starts # heads override sent_starts
doc = Doc( doc = Doc(
en_vocab, words=words, sent_starts=[True] * 4, heads=heads, deps=["dep"] * 4, en_vocab, words=words, sent_starts=[True] * 4, heads=heads, deps=["dep"] * 4
) )
assert [t.is_sent_start for t in doc] == [True, False, True, False] assert [t.is_sent_start for t in doc] == [True, False, True, False]
@ -533,5 +533,52 @@ def test_doc_ents_setter():
assert [e.label_ for e in doc.ents] == ["HELLO", "WORLD"] assert [e.label_ for e in doc.ents] == ["HELLO", "WORLD"]
vocab = Vocab() vocab = Vocab()
ents = [("HELLO", 0, 2), (vocab.strings.add("WORLD"), 3, 5)] ents = [("HELLO", 0, 2), (vocab.strings.add("WORLD"), 3, 5)]
ents = ["B-HELLO", "I-HELLO", "O", "B-WORLD", "I-WORLD"]
doc = Doc(vocab, words=words, ents=ents) doc = Doc(vocab, words=words, ents=ents)
assert [e.label_ for e in doc.ents] == ["HELLO", "WORLD"] assert [e.label_ for e in doc.ents] == ["HELLO", "WORLD"]
def test_doc_init_iob():
"""Test ents validation/normalization in Doc.__init__"""
words = ["a", "b", "c", "d", "e"]
ents = ["O"] * len(words)
doc = Doc(Vocab(), words=words, ents=ents)
assert doc.ents == ()
ents = ["B-PERSON", "I-PERSON", "O", "I-PERSON", "I-PERSON"]
doc = Doc(Vocab(), words=words, ents=ents)
assert len(doc.ents) == 2
ents = ["B-PERSON", "I-PERSON", "O", "I-PERSON", "I-GPE"]
doc = Doc(Vocab(), words=words, ents=ents)
assert len(doc.ents) == 3
# None is missing
ents = ["B-PERSON", "I-PERSON", "O", None, "I-GPE"]
doc = Doc(Vocab(), words=words, ents=ents)
assert len(doc.ents) == 2
# empty tag is missing
ents = ["", "B-PERSON", "O", "B-PERSON", "I-PERSON"]
doc = Doc(Vocab(), words=words, ents=ents)
assert len(doc.ents) == 2
# invalid IOB
ents = ["Q-PERSON", "I-PERSON", "O", "I-PERSON", "I-GPE"]
with pytest.raises(ValueError):
doc = Doc(Vocab(), words=words, ents=ents)
# no dash
ents = ["OPERSON", "I-PERSON", "O", "I-PERSON", "I-GPE"]
with pytest.raises(ValueError):
doc = Doc(Vocab(), words=words, ents=ents)
# no ent type
ents = ["O", "B-", "O", "I-PERSON", "I-GPE"]
with pytest.raises(ValueError):
doc = Doc(Vocab(), words=words, ents=ents)
# not strings or None
ents = [0, "B-", "O", "I-PERSON", "I-GPE"]
with pytest.raises(ValueError):
doc = Doc(Vocab(), words=words, ents=ents)

View File

@ -201,6 +201,12 @@ def test_doc_retokenize_spans_entity_merge(en_tokenizer):
heads = [1, 2, 2, 4, 6, 4, 2, 8, 6, 8, 9, 8, 8, 14, 12, 2, 15] heads = [1, 2, 2, 4, 6, 4, 2, 8, 6, 8, 9, 8, 8, 14, 12, 2, 15]
tags = ["NNP", "NNP", "VBZ", "DT", "VB", "RP", "NN", "WP", "VBZ", "IN", "NNP", "CC", "VBZ", "NNP", "NNP", ".", "SP"] tags = ["NNP", "NNP", "VBZ", "DT", "VB", "RP", "NN", "WP", "VBZ", "IN", "NNP", "CC", "VBZ", "NNP", "NNP", ".", "SP"]
ents = [("PERSON", 0, 2), ("GPE", 10, 11), ("PERSON", 13, 15)] ents = [("PERSON", 0, 2), ("GPE", 10, 11), ("PERSON", 13, 15)]
ents = ["O"] * len(heads)
ents[0] = "B-PERSON"
ents[1] = "I-PERSON"
ents[10] = "B-GPE"
ents[13] = "B-PERSON"
ents[14] = "I-PERSON"
# fmt: on # fmt: on
tokens = en_tokenizer(text) tokens = en_tokenizer(text)
doc = Doc( doc = Doc(
@ -269,7 +275,11 @@ def test_doc_retokenize_spans_entity_merge_iob(en_vocab):
# if there is a parse, span.root provides default values # if there is a parse, span.root provides default values
words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"] words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
heads = [0, 0, 3, 0, 0, 0, 5, 0, 0] heads = [0, 0, 3, 0, 0, 0, 5, 0, 0]
ents = [("ent-de", 3, 5), ("ent-fg", 5, 7)] ents = ["O"] * len(words)
ents[3] = "B-ent-de"
ents[4] = "I-ent-de"
ents[5] = "B-ent-fg"
ents[6] = "I-ent-fg"
deps = ["dep"] * len(words) deps = ["dep"] * len(words)
en_vocab.strings.add("ent-de") en_vocab.strings.add("ent-de")
en_vocab.strings.add("ent-fg") en_vocab.strings.add("ent-fg")
@ -292,7 +302,11 @@ def test_doc_retokenize_spans_entity_merge_iob(en_vocab):
# check that B is preserved if span[start] is B # check that B is preserved if span[start] is B
words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"] words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
heads = [0, 0, 3, 4, 0, 0, 5, 0, 0] heads = [0, 0, 3, 4, 0, 0, 5, 0, 0]
ents = [("ent-de", 3, 5), ("ent-de", 5, 7)] ents = ["O"] * len(words)
ents[3] = "B-ent-de"
ents[4] = "I-ent-de"
ents[5] = "B-ent-de"
ents[6] = "I-ent-de"
deps = ["dep"] * len(words) deps = ["dep"] * len(words)
doc = Doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents) doc = Doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
with doc.retokenize() as retokenizer: with doc.retokenize() as retokenizer:

View File

@ -9,7 +9,7 @@ def doc(en_vocab):
tags = ["VBP", "NN", "NN"] tags = ["VBP", "NN", "NN"]
heads = [0, 0, 0] heads = [0, 0, 0]
deps = ["ROOT", "dobj", "dobj"] deps = ["ROOT", "dobj", "dobj"]
ents = [("ORG", 1, 2)] ents = ["O", "B-ORG", "O"]
return Doc( return Doc(
en_vocab, words=words, pos=pos, tags=tags, heads=heads, deps=deps, ents=ents en_vocab, words=words, pos=pos, tags=tags, heads=heads, deps=deps, ents=ents
) )

View File

@ -2,8 +2,7 @@ import pytest
def test_noun_chunks_is_parsed_de(de_tokenizer): def test_noun_chunks_is_parsed_de(de_tokenizer):
"""Test that noun_chunks raises Value Error for 'de' language if Doc is not parsed. """Test that noun_chunks raises Value Error for 'de' language if Doc is not parsed."""
"""
doc = de_tokenizer("Er lag auf seinem") doc = de_tokenizer("Er lag auf seinem")
with pytest.raises(ValueError): with pytest.raises(ValueError):
list(doc.noun_chunks) list(doc.noun_chunks)

View File

@ -2,8 +2,7 @@ import pytest
def test_noun_chunks_is_parsed_el(el_tokenizer): def test_noun_chunks_is_parsed_el(el_tokenizer):
"""Test that noun_chunks raises Value Error for 'el' language if Doc is not parsed. """Test that noun_chunks raises Value Error for 'el' language if Doc is not parsed."""
"""
doc = el_tokenizer("είναι χώρα της νοτιοανατολικής") doc = el_tokenizer("είναι χώρα της νοτιοανατολικής")
with pytest.raises(ValueError): with pytest.raises(ValueError):
list(doc.noun_chunks) list(doc.noun_chunks)

View File

@ -7,8 +7,7 @@ import pytest
def test_noun_chunks_is_parsed(en_tokenizer): def test_noun_chunks_is_parsed(en_tokenizer):
"""Test that noun_chunks raises Value Error for 'en' language if Doc is not parsed. """Test that noun_chunks raises Value Error for 'en' language if Doc is not parsed."""
"""
doc = en_tokenizer("This is a sentence") doc = en_tokenizer("This is a sentence")
with pytest.raises(ValueError): with pytest.raises(ValueError):
list(doc.noun_chunks) list(doc.noun_chunks)

View File

@ -2,8 +2,7 @@ import pytest
def test_noun_chunks_is_parsed_es(es_tokenizer): def test_noun_chunks_is_parsed_es(es_tokenizer):
"""Test that noun_chunks raises Value Error for 'es' language if Doc is not parsed. """Test that noun_chunks raises Value Error for 'es' language if Doc is not parsed."""
"""
doc = es_tokenizer("en Oxford este verano") doc = es_tokenizer("en Oxford este verano")
with pytest.raises(ValueError): with pytest.raises(ValueError):
list(doc.noun_chunks) list(doc.noun_chunks)

View File

@ -2,8 +2,7 @@ import pytest
def test_noun_chunks_is_parsed_fa(fa_tokenizer): def test_noun_chunks_is_parsed_fa(fa_tokenizer):
"""Test that noun_chunks raises Value Error for 'fa' language if Doc is not parsed. """Test that noun_chunks raises Value Error for 'fa' language if Doc is not parsed."""
"""
doc = fa_tokenizer("این یک جمله نمونه می باشد.") doc = fa_tokenizer("این یک جمله نمونه می باشد.")
with pytest.raises(ValueError): with pytest.raises(ValueError):

View File

@ -36,9 +36,7 @@ def test_fr_tokenizer_infix_exceptions(fr_tokenizer, text):
assert len(tokens) == 1 assert len(tokens) == 1
@pytest.mark.parametrize( @pytest.mark.parametrize("text", ["janv.", "juill.", "Dr.", "av.", "sept."])
"text", ["janv.", "juill.", "Dr.", "av.", "sept."],
)
def test_fr_tokenizer_handles_abbr(fr_tokenizer, text): def test_fr_tokenizer_handles_abbr(fr_tokenizer, text):
tokens = fr_tokenizer(text) tokens = fr_tokenizer(text)
assert len(tokens) == 1 assert len(tokens) == 1

View File

@ -2,8 +2,7 @@ import pytest
def test_noun_chunks_is_parsed_fr(fr_tokenizer): def test_noun_chunks_is_parsed_fr(fr_tokenizer):
"""Test that noun_chunks raises Value Error for 'fr' language if Doc is not parsed. """Test that noun_chunks raises Value Error for 'fr' language if Doc is not parsed."""
"""
doc = fr_tokenizer("trouver des travaux antérieurs") doc = fr_tokenizer("trouver des travaux antérieurs")
with pytest.raises(ValueError): with pytest.raises(ValueError):
list(doc.noun_chunks) list(doc.noun_chunks)

View File

@ -2,8 +2,7 @@ import pytest
def test_noun_chunks_is_parsed_id(id_tokenizer): def test_noun_chunks_is_parsed_id(id_tokenizer):
"""Test that noun_chunks raises Value Error for 'id' language if Doc is not parsed. """Test that noun_chunks raises Value Error for 'id' language if Doc is not parsed."""
"""
doc = id_tokenizer("sebelas") doc = id_tokenizer("sebelas")
with pytest.raises(ValueError): with pytest.raises(ValueError):
list(doc.noun_chunks) list(doc.noun_chunks)

View File

@ -112,7 +112,7 @@ def test_ja_tokenizer_split_modes(ja_tokenizer, text, len_a, len_b, len_c):
@pytest.mark.parametrize( @pytest.mark.parametrize(
"text,sub_tokens_list_a,sub_tokens_list_b,sub_tokens_list_c", SUB_TOKEN_TESTS, "text,sub_tokens_list_a,sub_tokens_list_b,sub_tokens_list_c", SUB_TOKEN_TESTS
) )
def test_ja_tokenizer_sub_tokens( def test_ja_tokenizer_sub_tokens(
ja_tokenizer, text, sub_tokens_list_a, sub_tokens_list_b, sub_tokens_list_c ja_tokenizer, text, sub_tokens_list_a, sub_tokens_list_b, sub_tokens_list_c

View File

@ -2,8 +2,7 @@ import pytest
def test_noun_chunks_is_parsed_nb(nb_tokenizer): def test_noun_chunks_is_parsed_nb(nb_tokenizer):
"""Test that noun_chunks raises Value Error for 'nb' language if Doc is not parsed. """Test that noun_chunks raises Value Error for 'nb' language if Doc is not parsed."""
"""
doc = nb_tokenizer("Smørsausen brukes bl.a. til") doc = nb_tokenizer("Smørsausen brukes bl.a. til")
with pytest.raises(ValueError): with pytest.raises(ValueError):
list(doc.noun_chunks) list(doc.noun_chunks)

View File

@ -8,7 +8,7 @@ def test_ne_tokenizer_handlers_long_text(ne_tokenizer):
@pytest.mark.parametrize( @pytest.mark.parametrize(
"text,length", [("समय जान कति पनि बेर लाग्दैन ।", 7), ("म ठूलो हुँदै थिएँ ।", 5)], "text,length", [("समय जान कति पनि बेर लाग्दैन ।", 7), ("म ठूलो हुँदै थिएँ ।", 5)]
) )
def test_ne_tokenizer_handles_cnts(ne_tokenizer, text, length): def test_ne_tokenizer_handles_cnts(ne_tokenizer, text, length):
tokens = ne_tokenizer(text) tokens = ne_tokenizer(text)

View File

@ -10,7 +10,7 @@ def test_sa_tokenizer_handles_long_text(sa_tokenizer):
@pytest.mark.parametrize( @pytest.mark.parametrize(
"text,length", "text,length",
[ [
("श्री भगवानुवाच पश्य मे पार्थ रूपाणि शतशोऽथ सहस्रशः।", 9,), ("श्री भगवानुवाच पश्य मे पार्थ रूपाणि शतशोऽथ सहस्रशः।", 9),
("गुणान् सर्वान् स्वभावो मूर्ध्नि वर्तते ।", 6), ("गुणान् सर्वान् स्वभावो मूर्ध्नि वर्तते ।", 6),
], ],
) )

View File

@ -3,8 +3,7 @@ from spacy.tokens import Doc
def test_noun_chunks_is_parsed_sv(sv_tokenizer): def test_noun_chunks_is_parsed_sv(sv_tokenizer):
"""Test that noun_chunks raises Value Error for 'sv' language if Doc is not parsed. """Test that noun_chunks raises Value Error for 'sv' language if Doc is not parsed."""
"""
doc = sv_tokenizer("Studenten läste den bästa boken") doc = sv_tokenizer("Studenten läste den bästa boken")
with pytest.raises(ValueError): with pytest.raises(ValueError):
list(doc.noun_chunks) list(doc.noun_chunks)

View File

@ -27,9 +27,18 @@ def test_zh_tokenizer_serialize_jieba(zh_tokenizer_jieba):
@pytest.mark.slow @pytest.mark.slow
def test_zh_tokenizer_serialize_pkuseg_with_processors(zh_tokenizer_pkuseg): def test_zh_tokenizer_serialize_pkuseg_with_processors(zh_tokenizer_pkuseg):
nlp = Chinese( config = {
meta={ "nlp": {
"tokenizer": {"config": {"segmenter": "pkuseg", "pkuseg_model": "medicine"}} "tokenizer": {
} "@tokenizers": "spacy.zh.ChineseTokenizer",
) "segmenter": "pkuseg",
}
},
"initialize": {"tokenizer": {
"pkuseg_model": "medicine",
}
},
}
nlp = Chinese.from_config(config)
nlp.initialize()
zh_tokenizer_serialize(nlp.tokenizer) zh_tokenizer_serialize(nlp.tokenizer)

View File

@ -1,6 +1,6 @@
import pytest import pytest
from spacy.lang.zh import Chinese, _get_pkuseg_trie_data from spacy.lang.zh import Chinese, _get_pkuseg_trie_data
from thinc.config import ConfigValidationError from thinc.api import ConfigValidationError
# fmt: off # fmt: off

View File

@ -23,7 +23,7 @@ def parser(vocab):
"update_with_oracle_cut_size": 100, "update_with_oracle_cut_size": 100,
} }
cfg = {"model": DEFAULT_PARSER_MODEL} cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"] model = registry.resolve(cfg, validate=True)["model"]
parser = DependencyParser(vocab, model, **config) parser = DependencyParser(vocab, model, **config)
return parser return parser
@ -35,7 +35,7 @@ def test_init_parser(parser):
def _train_parser(parser): def _train_parser(parser):
fix_random_seed(1) fix_random_seed(1)
parser.add_label("left") parser.add_label("left")
parser.begin_training(lambda: [_parser_example(parser)], **parser.cfg) parser.initialize(lambda: [_parser_example(parser)])
sgd = Adam(0.001) sgd = Adam(0.001)
for i in range(5): for i in range(5):
@ -82,12 +82,12 @@ def test_add_label_deserializes_correctly():
"update_with_oracle_cut_size": 100, "update_with_oracle_cut_size": 100,
} }
cfg = {"model": DEFAULT_NER_MODEL} cfg = {"model": DEFAULT_NER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"] model = registry.resolve(cfg, validate=True)["model"]
ner1 = EntityRecognizer(Vocab(), model, **config) ner1 = EntityRecognizer(Vocab(), model, **config)
ner1.add_label("C") ner1.add_label("C")
ner1.add_label("B") ner1.add_label("B")
ner1.add_label("A") ner1.add_label("A")
ner1.begin_training(lambda: [_ner_example(ner1)]) ner1.initialize(lambda: [_ner_example(ner1)])
ner2 = EntityRecognizer(Vocab(), model, **config) ner2 = EntityRecognizer(Vocab(), model, **config)
# the second model needs to be resized before we can call from_bytes # the second model needs to be resized before we can call from_bytes
@ -111,7 +111,7 @@ def test_add_label_get_label(pipe_cls, n_moves, model_config):
splitting the move names. splitting the move names.
""" """
labels = ["A", "B", "C"] labels = ["A", "B", "C"]
model = registry.make_from_config({"model": model_config}, validate=True)["model"] model = registry.resolve({"model": model_config}, validate=True)["model"]
config = { config = {
"learn_tokens": False, "learn_tokens": False,
"min_action_freq": 30, "min_action_freq": 30,

View File

@ -127,7 +127,7 @@ def test_get_oracle_actions():
"update_with_oracle_cut_size": 100, "update_with_oracle_cut_size": 100,
} }
cfg = {"model": DEFAULT_PARSER_MODEL} cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"] model = registry.resolve(cfg, validate=True)["model"]
parser = DependencyParser(doc.vocab, model, **config) parser = DependencyParser(doc.vocab, model, **config)
parser.moves.add_action(0, "") parser.moves.add_action(0, "")
parser.moves.add_action(1, "") parser.moves.add_action(1, "")

View File

@ -202,7 +202,7 @@ def test_train_empty():
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
ner = nlp.add_pipe("ner", last=True) ner = nlp.add_pipe("ner", last=True)
ner.add_label("PERSON") ner.add_label("PERSON")
nlp.begin_training() nlp.initialize()
for itn in range(2): for itn in range(2):
losses = {} losses = {}
batches = util.minibatch(train_examples, size=8) batches = util.minibatch(train_examples, size=8)
@ -213,7 +213,7 @@ def test_train_empty():
def test_overwrite_token(): def test_overwrite_token():
nlp = English() nlp = English()
nlp.add_pipe("ner") nlp.add_pipe("ner")
nlp.begin_training() nlp.initialize()
# The untrained NER will predict O for each token # The untrained NER will predict O for each token
doc = nlp("I live in New York") doc = nlp("I live in New York")
assert [token.ent_iob_ for token in doc] == ["O", "O", "O", "O", "O"] assert [token.ent_iob_ for token in doc] == ["O", "O", "O", "O", "O"]
@ -235,7 +235,7 @@ def test_empty_ner():
nlp = English() nlp = English()
ner = nlp.add_pipe("ner") ner = nlp.add_pipe("ner")
ner.add_label("MY_LABEL") ner.add_label("MY_LABEL")
nlp.begin_training() nlp.initialize()
doc = nlp("John is watching the news about Croatia's elections") doc = nlp("John is watching the news about Croatia's elections")
# if this goes wrong, the initialization of the parser's upper layer is probably broken # if this goes wrong, the initialization of the parser's upper layer is probably broken
result = ["O", "O", "O", "O", "O", "O", "O", "O", "O"] result = ["O", "O", "O", "O", "O", "O", "O", "O", "O"]
@ -254,7 +254,7 @@ def test_ruler_before_ner():
# 2: untrained NER - should set everything else to O # 2: untrained NER - should set everything else to O
untrained_ner = nlp.add_pipe("ner") untrained_ner = nlp.add_pipe("ner")
untrained_ner.add_label("MY_LABEL") untrained_ner.add_label("MY_LABEL")
nlp.begin_training() nlp.initialize()
doc = nlp("This is Antti Korhonen speaking in Finland") doc = nlp("This is Antti Korhonen speaking in Finland")
expected_iobs = ["B", "O", "O", "O", "O", "O", "O"] expected_iobs = ["B", "O", "O", "O", "O", "O", "O"]
expected_types = ["THING", "", "", "", "", "", ""] expected_types = ["THING", "", "", "", "", "", ""]
@ -269,7 +269,7 @@ def test_ner_before_ruler():
# 1: untrained NER - should set everything to O # 1: untrained NER - should set everything to O
untrained_ner = nlp.add_pipe("ner", name="uner") untrained_ner = nlp.add_pipe("ner", name="uner")
untrained_ner.add_label("MY_LABEL") untrained_ner.add_label("MY_LABEL")
nlp.begin_training() nlp.initialize()
# 2 : Entity Ruler - should set "this" to B and keep everything else O # 2 : Entity Ruler - should set "this" to B and keep everything else O
patterns = [{"label": "THING", "pattern": "This"}] patterns = [{"label": "THING", "pattern": "This"}]
@ -290,7 +290,7 @@ def test_block_ner():
nlp.add_pipe("blocker", config={"start": 2, "end": 5}) nlp.add_pipe("blocker", config={"start": 2, "end": 5})
untrained_ner = nlp.add_pipe("ner") untrained_ner = nlp.add_pipe("ner")
untrained_ner.add_label("MY_LABEL") untrained_ner.add_label("MY_LABEL")
nlp.begin_training() nlp.initialize()
doc = nlp("This is Antti L Korhonen speaking in Finland") doc = nlp("This is Antti L Korhonen speaking in Finland")
expected_iobs = ["O", "O", "B", "B", "B", "O", "O", "O"] expected_iobs = ["O", "O", "B", "B", "B", "O", "O", "O"]
expected_types = ["", "", "", "", "", "", "", ""] expected_types = ["", "", "", "", "", "", "", ""]
@ -307,7 +307,7 @@ def test_overfitting_IO():
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
for ent in annotations.get("entities"): for ent in annotations.get("entities"):
ner.add_label(ent[2]) ner.add_label(ent[2])
optimizer = nlp.begin_training() optimizer = nlp.initialize()
for i in range(50): for i in range(50):
losses = {} losses = {}
@ -340,13 +340,13 @@ def test_ner_warns_no_lookups(caplog):
assert not len(nlp.vocab.lookups) assert not len(nlp.vocab.lookups)
nlp.add_pipe("ner") nlp.add_pipe("ner")
with caplog.at_level(logging.DEBUG): with caplog.at_level(logging.DEBUG):
nlp.begin_training() nlp.initialize()
assert "W033" in caplog.text assert "W033" in caplog.text
caplog.clear() caplog.clear()
nlp.vocab.lookups.add_table("lexeme_norm") nlp.vocab.lookups.add_table("lexeme_norm")
nlp.vocab.lookups.get_table("lexeme_norm")["a"] = "A" nlp.vocab.lookups.get_table("lexeme_norm")["a"] = "A"
with caplog.at_level(logging.DEBUG): with caplog.at_level(logging.DEBUG):
nlp.begin_training() nlp.initialize()
assert "W033" not in caplog.text assert "W033" not in caplog.text
@ -358,5 +358,5 @@ class BlockerComponent1:
self.name = name self.name = name
def __call__(self, doc): def __call__(self, doc):
doc.set_ents([], blocked=[doc[self.start:self.end]], default="unmodified") doc.set_ents([], blocked=[doc[self.start : self.end]], default="unmodified")
return doc return doc

View File

@ -25,7 +25,7 @@ def arc_eager(vocab):
@pytest.fixture @pytest.fixture
def tok2vec(): def tok2vec():
cfg = {"model": DEFAULT_TOK2VEC_MODEL} cfg = {"model": DEFAULT_TOK2VEC_MODEL}
tok2vec = registry.make_from_config(cfg, validate=True)["model"] tok2vec = registry.resolve(cfg, validate=True)["model"]
tok2vec.initialize() tok2vec.initialize()
return tok2vec return tok2vec
@ -38,14 +38,14 @@ def parser(vocab, arc_eager):
"update_with_oracle_cut_size": 100, "update_with_oracle_cut_size": 100,
} }
cfg = {"model": DEFAULT_PARSER_MODEL} cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"] model = registry.resolve(cfg, validate=True)["model"]
return Parser(vocab, model, moves=arc_eager, **config) return Parser(vocab, model, moves=arc_eager, **config)
@pytest.fixture @pytest.fixture
def model(arc_eager, tok2vec, vocab): def model(arc_eager, tok2vec, vocab):
cfg = {"model": DEFAULT_PARSER_MODEL} cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"] model = registry.resolve(cfg, validate=True)["model"]
model.attrs["resize_output"](model, arc_eager.n_moves) model.attrs["resize_output"](model, arc_eager.n_moves)
model.initialize() model.initialize()
return model return model
@ -72,7 +72,7 @@ def test_build_model(parser, vocab):
"update_with_oracle_cut_size": 100, "update_with_oracle_cut_size": 100,
} }
cfg = {"model": DEFAULT_PARSER_MODEL} cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"] model = registry.resolve(cfg, validate=True)["model"]
parser.model = Parser(vocab, model=model, moves=parser.moves, **config).model parser.model = Parser(vocab, model=model, moves=parser.moves, **config).model
assert parser.model is not None assert parser.model is not None

View File

@ -191,7 +191,7 @@ def test_overfitting_IO():
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
for dep in annotations.get("deps", []): for dep in annotations.get("deps", []):
parser.add_label(dep) parser.add_label(dep)
optimizer = nlp.begin_training() optimizer = nlp.initialize()
for i in range(100): for i in range(100):
losses = {} losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses) nlp.update(train_examples, sgd=optimizer, losses=losses)

View File

@ -28,13 +28,13 @@ def parser(vocab):
"update_with_oracle_cut_size": 100, "update_with_oracle_cut_size": 100,
} }
cfg = {"model": DEFAULT_PARSER_MODEL} cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"] model = registry.resolve(cfg, validate=True)["model"]
parser = DependencyParser(vocab, model, **config) parser = DependencyParser(vocab, model, **config)
parser.cfg["token_vector_width"] = 4 parser.cfg["token_vector_width"] = 4
parser.cfg["hidden_width"] = 32 parser.cfg["hidden_width"] = 32
# parser.add_label('right') # parser.add_label('right')
parser.add_label("left") parser.add_label("left")
parser.begin_training(lambda: [_parser_example(parser)], **parser.cfg) parser.initialize(lambda: [_parser_example(parser)])
sgd = Adam(0.001) sgd = Adam(0.001)
for i in range(10): for i in range(10):

View File

@ -134,7 +134,7 @@ def test_kb_undefined(nlp):
"""Test that the EL can't train without defining a KB""" """Test that the EL can't train without defining a KB"""
entity_linker = nlp.add_pipe("entity_linker", config={}) entity_linker = nlp.add_pipe("entity_linker", config={})
with pytest.raises(ValueError): with pytest.raises(ValueError):
entity_linker.begin_training(lambda: []) entity_linker.initialize(lambda: [])
def test_kb_empty(nlp): def test_kb_empty(nlp):
@ -143,7 +143,7 @@ def test_kb_empty(nlp):
entity_linker = nlp.add_pipe("entity_linker", config=config) entity_linker = nlp.add_pipe("entity_linker", config=config)
assert len(entity_linker.kb) == 0 assert len(entity_linker.kb) == 0
with pytest.raises(ValueError): with pytest.raises(ValueError):
entity_linker.begin_training(lambda: []) entity_linker.initialize(lambda: [])
def test_kb_serialize(nlp): def test_kb_serialize(nlp):
@ -254,14 +254,12 @@ def test_vocab_serialization(nlp):
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1) mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities # adding entities
q1_hash = mykb.add_entity(entity="Q1", freq=27, entity_vector=[1]) mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
q2_hash = mykb.add_entity(entity="Q2", freq=12, entity_vector=[2]) q2_hash = mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
q3_hash = mykb.add_entity(entity="Q3", freq=5, entity_vector=[3]) mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
# adding aliases # adding aliases
douglas_hash = mykb.add_alias( mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1])
alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1]
)
adam_hash = mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9]) adam_hash = mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
candidates = mykb.get_alias_candidates("adam") candidates = mykb.get_alias_candidates("adam")
@ -360,7 +358,7 @@ def test_preserving_links_asdoc(nlp):
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
el_config = {"kb_loader": {"@misc": "myLocationsKB.v1"}, "incl_prior": False} el_config = {"kb_loader": {"@misc": "myLocationsKB.v1"}, "incl_prior": False}
entity_linker = nlp.add_pipe("entity_linker", config=el_config, last=True) entity_linker = nlp.add_pipe("entity_linker", config=el_config, last=True)
nlp.begin_training() nlp.initialize()
assert entity_linker.model.get_dim("nO") == vector_length assert entity_linker.model.get_dim("nO") == vector_length
# test whether the entity links are preserved by the `as_doc()` function # test whether the entity links are preserved by the `as_doc()` function
@ -463,7 +461,7 @@ def test_overfitting_IO():
) )
# train the NEL pipe # train the NEL pipe
optimizer = nlp.begin_training(get_examples=lambda: train_examples) optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert entity_linker.model.get_dim("nO") == vector_length assert entity_linker.model.get_dim("nO") == vector_length
assert entity_linker.model.get_dim("nO") == entity_linker.kb.entity_vector_length assert entity_linker.model.get_dim("nO") == entity_linker.kb.entity_vector_length

View File

@ -0,0 +1,69 @@
import pytest
from spacy.language import Language
from spacy.lang.en import English
from spacy.training import Example
from thinc.api import ConfigValidationError
from pydantic import StrictBool
def test_initialize_arguments():
name = "test_initialize_arguments"
class CustomTokenizer:
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.from_initialize = None
def __call__(self, text):
return self.tokenizer(text)
def initialize(self, get_examples, nlp, custom: int):
self.from_initialize = custom
class Component:
def __init__(self):
self.from_initialize = None
def initialize(
self, get_examples, nlp, custom1: str, custom2: StrictBool = False
):
self.from_initialize = (custom1, custom2)
Language.factory(name, func=lambda nlp, name: Component())
nlp = English()
nlp.tokenizer = CustomTokenizer(nlp.tokenizer)
example = Example.from_dict(nlp("x"), {})
get_examples = lambda: [example]
nlp.add_pipe(name)
# The settings here will typically come from the [initialize] block
init_cfg = {"tokenizer": {"custom": 1}, "components": {name: {}}}
nlp.config["initialize"].update(init_cfg)
with pytest.raises(ConfigValidationError) as e:
# Empty config for component, no required custom1 argument
nlp.initialize(get_examples)
errors = e.value.errors
assert len(errors) == 1
assert errors[0]["loc"] == ("custom1",)
assert errors[0]["type"] == "value_error.missing"
init_cfg = {
"tokenizer": {"custom": 1},
"components": {name: {"custom1": "x", "custom2": 1}},
}
nlp.config["initialize"].update(init_cfg)
with pytest.raises(ConfigValidationError) as e:
# Wrong type of custom 2
nlp.initialize(get_examples)
errors = e.value.errors
assert len(errors) == 1
assert errors[0]["loc"] == ("custom2",)
assert errors[0]["type"] == "value_error.strictbool"
init_cfg = {
"tokenizer": {"custom": 1},
"components": {name: {"custom1": "x"}},
}
nlp.config["initialize"].update(init_cfg)
nlp.initialize(get_examples)
assert nlp.tokenizer.from_initialize == 1
pipe = nlp.get_pipe(name)
assert pipe.from_initialize == ("x", False)

View File

@ -33,7 +33,7 @@ def test_no_label():
nlp = Language() nlp = Language()
nlp.add_pipe("morphologizer") nlp.add_pipe("morphologizer")
with pytest.raises(ValueError): with pytest.raises(ValueError):
nlp.begin_training() nlp.initialize()
def test_implicit_label(): def test_implicit_label():
@ -42,7 +42,7 @@ def test_implicit_label():
train_examples = [] train_examples = []
for t in TRAIN_DATA: for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
nlp.begin_training(get_examples=lambda: train_examples) nlp.initialize(get_examples=lambda: train_examples)
def test_no_resize(): def test_no_resize():
@ -50,13 +50,13 @@ def test_no_resize():
morphologizer = nlp.add_pipe("morphologizer") morphologizer = nlp.add_pipe("morphologizer")
morphologizer.add_label("POS" + Morphology.FIELD_SEP + "NOUN") morphologizer.add_label("POS" + Morphology.FIELD_SEP + "NOUN")
morphologizer.add_label("POS" + Morphology.FIELD_SEP + "VERB") morphologizer.add_label("POS" + Morphology.FIELD_SEP + "VERB")
nlp.begin_training() nlp.initialize()
# this throws an error because the morphologizer can't be resized after initialization # this throws an error because the morphologizer can't be resized after initialization
with pytest.raises(ValueError): with pytest.raises(ValueError):
morphologizer.add_label("POS" + Morphology.FIELD_SEP + "ADJ") morphologizer.add_label("POS" + Morphology.FIELD_SEP + "ADJ")
def test_begin_training_examples(): def test_initialize_examples():
nlp = Language() nlp = Language()
morphologizer = nlp.add_pipe("morphologizer") morphologizer = nlp.add_pipe("morphologizer")
morphologizer.add_label("POS" + Morphology.FIELD_SEP + "NOUN") morphologizer.add_label("POS" + Morphology.FIELD_SEP + "NOUN")
@ -64,12 +64,12 @@ def test_begin_training_examples():
for t in TRAIN_DATA: for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
# you shouldn't really call this more than once, but for testing it should be fine # you shouldn't really call this more than once, but for testing it should be fine
nlp.begin_training() nlp.initialize()
nlp.begin_training(get_examples=lambda: train_examples) nlp.initialize(get_examples=lambda: train_examples)
with pytest.raises(TypeError):
nlp.begin_training(get_examples=lambda: None)
with pytest.raises(ValueError): with pytest.raises(ValueError):
nlp.begin_training(get_examples=train_examples) nlp.initialize(get_examples=lambda: None)
with pytest.raises(ValueError):
nlp.initialize(get_examples=train_examples)
def test_overfitting_IO(): def test_overfitting_IO():
@ -79,7 +79,7 @@ def test_overfitting_IO():
train_examples = [] train_examples = []
for inst in TRAIN_DATA: for inst in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(inst[0]), inst[1])) train_examples.append(Example.from_dict(nlp.make_doc(inst[0]), inst[1]))
optimizer = nlp.begin_training(get_examples=lambda: train_examples) optimizer = nlp.initialize(get_examples=lambda: train_examples)
for i in range(50): for i in range(50):
losses = {} losses = {}

View File

@ -4,8 +4,7 @@ from spacy.lang.en import English
from spacy.lang.de import German from spacy.lang.de import German
from spacy.tokens import Doc from spacy.tokens import Doc
from spacy.util import registry, SimpleFrozenDict, combine_score_weights from spacy.util import registry, SimpleFrozenDict, combine_score_weights
from thinc.api import Model, Linear from thinc.api import Model, Linear, ConfigValidationError
from thinc.config import ConfigValidationError
from pydantic import StrictInt, StrictStr from pydantic import StrictInt, StrictStr
from ..util import make_tempdir from ..util import make_tempdir

View File

@ -31,19 +31,19 @@ TRAIN_DATA = [
] ]
def test_begin_training_examples(): def test_initialize_examples():
nlp = Language() nlp = Language()
nlp.add_pipe("senter") nlp.add_pipe("senter")
train_examples = [] train_examples = []
for t in TRAIN_DATA: for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
# you shouldn't really call this more than once, but for testing it should be fine # you shouldn't really call this more than once, but for testing it should be fine
nlp.begin_training() nlp.initialize()
nlp.begin_training(get_examples=lambda: train_examples) nlp.initialize(get_examples=lambda: train_examples)
with pytest.raises(TypeError):
nlp.begin_training(get_examples=lambda: None)
with pytest.raises(ValueError): with pytest.raises(ValueError):
nlp.begin_training(get_examples=train_examples) nlp.initialize(get_examples=lambda: None)
with pytest.raises(ValueError):
nlp.initialize(get_examples=train_examples)
def test_overfitting_IO(): def test_overfitting_IO():
@ -58,7 +58,7 @@ def test_overfitting_IO():
train_examples[1].reference[11].is_sent_start = False train_examples[1].reference[11].is_sent_start = False
nlp.add_pipe("senter") nlp.add_pipe("senter")
optimizer = nlp.begin_training() optimizer = nlp.initialize()
for i in range(200): for i in range(200):
losses = {} losses = {}

View File

@ -15,14 +15,14 @@ def test_label_types():
tagger.add_label(9) tagger.add_label(9)
def test_tagger_begin_training_tag_map(): def test_tagger_initialize_tag_map():
"""Test that Tagger.begin_training() without gold tuples does not clobber """Test that Tagger.initialize() without gold tuples does not clobber
the tag map.""" the tag map."""
nlp = Language() nlp = Language()
tagger = nlp.add_pipe("tagger") tagger = nlp.add_pipe("tagger")
orig_tag_count = len(tagger.labels) orig_tag_count = len(tagger.labels)
tagger.add_label("A") tagger.add_label("A")
nlp.begin_training() nlp.initialize()
assert orig_tag_count + 1 == len(nlp.get_pipe("tagger").labels) assert orig_tag_count + 1 == len(nlp.get_pipe("tagger").labels)
@ -38,7 +38,7 @@ def test_no_label():
nlp = Language() nlp = Language()
nlp.add_pipe("tagger") nlp.add_pipe("tagger")
with pytest.raises(ValueError): with pytest.raises(ValueError):
nlp.begin_training() nlp.initialize()
def test_no_resize(): def test_no_resize():
@ -47,7 +47,7 @@ def test_no_resize():
tagger.add_label("N") tagger.add_label("N")
tagger.add_label("V") tagger.add_label("V")
assert tagger.labels == ("N", "V") assert tagger.labels == ("N", "V")
nlp.begin_training() nlp.initialize()
assert tagger.model.get_dim("nO") == 2 assert tagger.model.get_dim("nO") == 2
# this throws an error because the tagger can't be resized after initialization # this throws an error because the tagger can't be resized after initialization
with pytest.raises(ValueError): with pytest.raises(ValueError):
@ -60,10 +60,10 @@ def test_implicit_label():
train_examples = [] train_examples = []
for t in TRAIN_DATA: for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
nlp.begin_training(get_examples=lambda: train_examples) nlp.initialize(get_examples=lambda: train_examples)
def test_begin_training_examples(): def test_initialize_examples():
nlp = Language() nlp = Language()
tagger = nlp.add_pipe("tagger") tagger = nlp.add_pipe("tagger")
train_examples = [] train_examples = []
@ -72,16 +72,16 @@ def test_begin_training_examples():
for t in TRAIN_DATA: for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
# you shouldn't really call this more than once, but for testing it should be fine # you shouldn't really call this more than once, but for testing it should be fine
nlp.begin_training() nlp.initialize()
nlp.begin_training(get_examples=lambda: train_examples) nlp.initialize(get_examples=lambda: train_examples)
with pytest.raises(TypeError):
nlp.begin_training(get_examples=lambda: None)
with pytest.raises(TypeError):
nlp.begin_training(get_examples=lambda: train_examples[0])
with pytest.raises(ValueError): with pytest.raises(ValueError):
nlp.begin_training(get_examples=lambda: []) nlp.initialize(get_examples=lambda: None)
with pytest.raises(TypeError):
nlp.initialize(get_examples=lambda: train_examples[0])
with pytest.raises(ValueError): with pytest.raises(ValueError):
nlp.begin_training(get_examples=train_examples) nlp.initialize(get_examples=lambda: [])
with pytest.raises(ValueError):
nlp.initialize(get_examples=train_examples)
def test_overfitting_IO(): def test_overfitting_IO():
@ -91,7 +91,7 @@ def test_overfitting_IO():
train_examples = [] train_examples = []
for t in TRAIN_DATA: for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
optimizer = nlp.begin_training(get_examples=lambda: train_examples) optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert tagger.model.get_dim("nO") == len(TAGS) assert tagger.model.get_dim("nO") == len(TAGS)
for i in range(50): for i in range(50):
@ -122,4 +122,4 @@ def test_tagger_requires_labels():
nlp = English() nlp = English()
nlp.add_pipe("tagger") nlp.add_pipe("tagger")
with pytest.raises(ValueError): with pytest.raises(ValueError):
nlp.begin_training() nlp.initialize()

View File

@ -9,10 +9,10 @@ from spacy.pipeline import TextCategorizer
from spacy.tokens import Doc from spacy.tokens import Doc
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
from spacy.scorer import Scorer from spacy.scorer import Scorer
from spacy.training import Example
from spacy.training.initialize import verify_textcat_config
from ..util import make_tempdir from ..util import make_tempdir
from ...cli.train import verify_textcat_config
from ...training import Example
TRAIN_DATA = [ TRAIN_DATA = [
@ -26,7 +26,7 @@ def test_simple_train():
nlp = Language() nlp = Language()
textcat = nlp.add_pipe("textcat") textcat = nlp.add_pipe("textcat")
textcat.add_label("answer") textcat.add_label("answer")
nlp.begin_training() nlp.initialize()
for i in range(5): for i in range(5):
for text, answer in [ for text, answer in [
("aaaa", 1.0), ("aaaa", 1.0),
@ -56,7 +56,7 @@ def test_textcat_learns_multilabel():
textcat = TextCategorizer(nlp.vocab, width=8) textcat = TextCategorizer(nlp.vocab, width=8)
for letter in letters: for letter in letters:
textcat.add_label(letter) textcat.add_label(letter)
optimizer = textcat.begin_training(lambda: []) optimizer = textcat.initialize(lambda: [])
for i in range(30): for i in range(30):
losses = {} losses = {}
examples = [Example.from_dict(doc, {"cats": cats}) for doc, cat in docs] examples = [Example.from_dict(doc, {"cats": cats}) for doc, cat in docs]
@ -86,7 +86,7 @@ def test_no_label():
nlp = Language() nlp = Language()
nlp.add_pipe("textcat") nlp.add_pipe("textcat")
with pytest.raises(ValueError): with pytest.raises(ValueError):
nlp.begin_training() nlp.initialize()
def test_implicit_label(): def test_implicit_label():
@ -95,7 +95,7 @@ def test_implicit_label():
train_examples = [] train_examples = []
for t in TRAIN_DATA: for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1])) train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
nlp.begin_training(get_examples=lambda: train_examples) nlp.initialize(get_examples=lambda: train_examples)
def test_no_resize(): def test_no_resize():
@ -103,14 +103,14 @@ def test_no_resize():
textcat = nlp.add_pipe("textcat") textcat = nlp.add_pipe("textcat")
textcat.add_label("POSITIVE") textcat.add_label("POSITIVE")
textcat.add_label("NEGATIVE") textcat.add_label("NEGATIVE")
nlp.begin_training() nlp.initialize()
assert textcat.model.get_dim("nO") == 2 assert textcat.model.get_dim("nO") == 2
# this throws an error because the textcat can't be resized after initialization # this throws an error because the textcat can't be resized after initialization
with pytest.raises(ValueError): with pytest.raises(ValueError):
textcat.add_label("NEUTRAL") textcat.add_label("NEUTRAL")
def test_begin_training_examples(): def test_initialize_examples():
nlp = Language() nlp = Language()
textcat = nlp.add_pipe("textcat") textcat = nlp.add_pipe("textcat")
train_examples = [] train_examples = []
@ -119,12 +119,12 @@ def test_begin_training_examples():
for label, value in annotations.get("cats").items(): for label, value in annotations.get("cats").items():
textcat.add_label(label) textcat.add_label(label)
# you shouldn't really call this more than once, but for testing it should be fine # you shouldn't really call this more than once, but for testing it should be fine
nlp.begin_training() nlp.initialize()
nlp.begin_training(get_examples=lambda: train_examples) nlp.initialize(get_examples=lambda: train_examples)
with pytest.raises(TypeError):
nlp.begin_training(get_examples=lambda: None)
with pytest.raises(ValueError): with pytest.raises(ValueError):
nlp.begin_training(get_examples=train_examples) nlp.initialize(get_examples=lambda: None)
with pytest.raises(ValueError):
nlp.initialize(get_examples=train_examples)
def test_overfitting_IO(): def test_overfitting_IO():
@ -139,7 +139,7 @@ def test_overfitting_IO():
train_examples = [] train_examples = []
for text, annotations in TRAIN_DATA: for text, annotations in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
optimizer = nlp.begin_training(get_examples=lambda: train_examples) optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert textcat.model.get_dim("nO") == 2 assert textcat.model.get_dim("nO") == 2
for i in range(50): for i in range(50):
@ -195,7 +195,7 @@ def test_textcat_configs(textcat_config):
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
for label, value in annotations.get("cats").items(): for label, value in annotations.get("cats").items():
textcat.add_label(label) textcat.add_label(label)
optimizer = nlp.begin_training() optimizer = nlp.initialize()
for i in range(5): for i in range(5):
losses = {} losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses) nlp.update(train_examples, sgd=optimizer, losses=losses)
@ -226,6 +226,7 @@ def test_positive_class_not_binary():
with pytest.raises(ValueError): with pytest.raises(ValueError):
verify_textcat_config(nlp, pipe_config) verify_textcat_config(nlp, pipe_config)
def test_textcat_evaluation(): def test_textcat_evaluation():
train_examples = [] train_examples = []
nlp = English() nlp = English()
@ -241,15 +242,17 @@ def test_textcat_evaluation():
pred2.cats = {"winter": 1.0, "summer": 0.0, "spring": 0.0, "autumn": 1.0} pred2.cats = {"winter": 1.0, "summer": 0.0, "spring": 0.0, "autumn": 1.0}
train_examples.append(Example(pred2, ref2)) train_examples.append(Example(pred2, ref2))
scores = Scorer().score_cats(train_examples, "cats", labels=["winter", "summer", "spring", "autumn"]) scores = Scorer().score_cats(
assert scores["cats_f_per_type"]["winter"]["p"] == 1/2 train_examples, "cats", labels=["winter", "summer", "spring", "autumn"]
assert scores["cats_f_per_type"]["winter"]["r"] == 1/1 )
assert scores["cats_f_per_type"]["winter"]["p"] == 1 / 2
assert scores["cats_f_per_type"]["winter"]["r"] == 1 / 1
assert scores["cats_f_per_type"]["summer"]["p"] == 0 assert scores["cats_f_per_type"]["summer"]["p"] == 0
assert scores["cats_f_per_type"]["summer"]["r"] == 0/1 assert scores["cats_f_per_type"]["summer"]["r"] == 0 / 1
assert scores["cats_f_per_type"]["spring"]["p"] == 1/1 assert scores["cats_f_per_type"]["spring"]["p"] == 1 / 1
assert scores["cats_f_per_type"]["spring"]["r"] == 1/2 assert scores["cats_f_per_type"]["spring"]["r"] == 1 / 2
assert scores["cats_f_per_type"]["autumn"]["p"] == 2/2 assert scores["cats_f_per_type"]["autumn"]["p"] == 2 / 2
assert scores["cats_f_per_type"]["autumn"]["r"] == 2/2 assert scores["cats_f_per_type"]["autumn"]["r"] == 2 / 2
assert scores["cats_micro_p"] == 4/5 assert scores["cats_micro_p"] == 4 / 5
assert scores["cats_micro_r"] == 4/6 assert scores["cats_micro_r"] == 4 / 6

View File

@ -73,8 +73,7 @@ def test_tok2vec_configs(width, embed_arch, embed_config, encode_arch, encode_co
encode_config["width"] = width encode_config["width"] = width
docs = get_batch(3) docs = get_batch(3)
tok2vec = build_Tok2Vec_model( tok2vec = build_Tok2Vec_model(
embed_arch(**embed_config), embed_arch(**embed_config), encode_arch(**encode_config)
encode_arch(**encode_config)
) )
tok2vec.initialize(docs) tok2vec.initialize(docs)
vectors, backprop = tok2vec.begin_update(docs) vectors, backprop = tok2vec.begin_update(docs)
@ -88,7 +87,7 @@ def test_init_tok2vec():
nlp = English() nlp = English()
tok2vec = nlp.add_pipe("tok2vec") tok2vec = nlp.add_pipe("tok2vec")
assert tok2vec.listeners == [] assert tok2vec.listeners == []
nlp.begin_training() nlp.initialize()
assert tok2vec.model.get_dim("nO") assert tok2vec.model.get_dim("nO")
@ -139,7 +138,7 @@ TRAIN_DATA = [
def test_tok2vec_listener(): def test_tok2vec_listener():
orig_config = Config().from_str(cfg_string) orig_config = Config().from_str(cfg_string)
nlp, config = util.load_model_from_config(orig_config, auto_fill=True, validate=True) nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
assert nlp.pipe_names == ["tok2vec", "tagger"] assert nlp.pipe_names == ["tok2vec", "tagger"]
tagger = nlp.get_pipe("tagger") tagger = nlp.get_pipe("tagger")
tok2vec = nlp.get_pipe("tok2vec") tok2vec = nlp.get_pipe("tok2vec")
@ -154,7 +153,7 @@ def test_tok2vec_listener():
# Check that the Tok2Vec component finds it listeners # Check that the Tok2Vec component finds it listeners
assert tok2vec.listeners == [] assert tok2vec.listeners == []
optimizer = nlp.begin_training(lambda: train_examples) optimizer = nlp.initialize(lambda: train_examples)
assert tok2vec.listeners == [tagger_tok2vec] assert tok2vec.listeners == [tagger_tok2vec]
for i in range(5): for i in range(5):
@ -173,7 +172,7 @@ def test_tok2vec_listener():
def test_tok2vec_listener_callback(): def test_tok2vec_listener_callback():
orig_config = Config().from_str(cfg_string) orig_config = Config().from_str(cfg_string)
nlp, config = util.load_model_from_config(orig_config, auto_fill=True, validate=True) nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
assert nlp.pipe_names == ["tok2vec", "tagger"] assert nlp.pipe_names == ["tok2vec", "tagger"]
tagger = nlp.get_pipe("tagger") tagger = nlp.get_pipe("tagger")
tok2vec = nlp.get_pipe("tok2vec") tok2vec = nlp.get_pipe("tok2vec")

View File

@ -428,7 +428,7 @@ def test_issue999():
for _, offsets in TRAIN_DATA: for _, offsets in TRAIN_DATA:
for start, end, label in offsets: for start, end, label in offsets:
ner.add_label(label) ner.add_label(label)
nlp.begin_training() nlp.initialize()
for itn in range(20): for itn in range(20):
random.shuffle(TRAIN_DATA) random.shuffle(TRAIN_DATA)
for raw_text, entity_offsets in TRAIN_DATA: for raw_text, entity_offsets in TRAIN_DATA:

View File

@ -250,7 +250,7 @@ def test_issue1915():
ner = nlp.add_pipe("ner") ner = nlp.add_pipe("ner")
ner.add_label("answer") ner.add_label("answer")
with pytest.raises(ValueError): with pytest.raises(ValueError):
nlp.begin_training(**cfg) nlp.initialize(**cfg)
def test_issue1945(): def test_issue1945():

View File

@ -30,7 +30,7 @@ def test_issue2179():
nlp = Italian() nlp = Italian()
ner = nlp.add_pipe("ner") ner = nlp.add_pipe("ner")
ner.add_label("CITIZENSHIP") ner.add_label("CITIZENSHIP")
nlp.begin_training() nlp.initialize()
nlp2 = Italian() nlp2 = Italian()
nlp2.add_pipe("ner") nlp2.add_pipe("ner")
assert len(nlp2.get_pipe("ner").labels) == 0 assert len(nlp2.get_pipe("ner").labels) == 0

View File

@ -18,7 +18,7 @@ def test_issue2564():
nlp = Language() nlp = Language()
tagger = nlp.add_pipe("tagger") tagger = nlp.add_pipe("tagger")
tagger.add_label("A") tagger.add_label("A")
nlp.begin_training() nlp.initialize()
doc = nlp("hello world") doc = nlp("hello world")
assert doc.has_annotation("TAG") assert doc.has_annotation("TAG")
docs = nlp.pipe(["hello", "world"]) docs = nlp.pipe(["hello", "world"])
@ -149,7 +149,7 @@ def test_issue2800():
ner = nlp.add_pipe("ner") ner = nlp.add_pipe("ner")
for entity_type in list(entity_types): for entity_type in list(entity_types):
ner.add_label(entity_type) ner.add_label(entity_type)
optimizer = nlp.begin_training() optimizer = nlp.initialize()
for i in range(20): for i in range(20):
losses = {} losses = {}
random.shuffle(train_data) random.shuffle(train_data)

View File

@ -59,7 +59,7 @@ def test_issue3012(en_vocab):
words = ["This", "is", "10", "%", "."] words = ["This", "is", "10", "%", "."]
tags = ["DT", "VBZ", "CD", "NN", "."] tags = ["DT", "VBZ", "CD", "NN", "."]
pos = ["DET", "VERB", "NUM", "NOUN", "PUNCT"] pos = ["DET", "VERB", "NUM", "NOUN", "PUNCT"]
ents = [("PERCENT", 2, 4)] ents = ["O", "O", "B-PERCENT", "I-PERCENT", "O"]
doc = Doc(en_vocab, words=words, tags=tags, pos=pos, ents=ents) doc = Doc(en_vocab, words=words, tags=tags, pos=pos, ents=ents)
assert doc.has_annotation("TAG") assert doc.has_annotation("TAG")
expected = ("10", "NUM", "CD", "PERCENT") expected = ("10", "NUM", "CD", "PERCENT")
@ -92,7 +92,7 @@ def test_issue3209():
nlp = English() nlp = English()
ner = nlp.add_pipe("ner") ner = nlp.add_pipe("ner")
ner.add_label("ANIMAL") ner.add_label("ANIMAL")
nlp.begin_training() nlp.initialize()
move_names = ["O", "B-ANIMAL", "I-ANIMAL", "L-ANIMAL", "U-ANIMAL"] move_names = ["O", "B-ANIMAL", "I-ANIMAL", "L-ANIMAL", "U-ANIMAL"]
assert ner.move_names == move_names assert ner.move_names == move_names
nlp2 = English() nlp2 = English()
@ -195,7 +195,7 @@ def test_issue3345():
"update_with_oracle_cut_size": 100, "update_with_oracle_cut_size": 100,
} }
cfg = {"model": DEFAULT_NER_MODEL} cfg = {"model": DEFAULT_NER_MODEL}
model = registry.make_from_config(cfg, validate=True)["model"] model = registry.resolve(cfg, validate=True)["model"]
ner = EntityRecognizer(doc.vocab, model, **config) ner = EntityRecognizer(doc.vocab, model, **config)
# Add the OUT action. I wouldn't have thought this would be necessary... # Add the OUT action. I wouldn't have thought this would be necessary...
ner.moves.add_action(5, "") ner.moves.add_action(5, "")
@ -239,7 +239,7 @@ def test_issue3456():
nlp = English() nlp = English()
tagger = nlp.add_pipe("tagger") tagger = nlp.add_pipe("tagger")
tagger.add_label("A") tagger.add_label("A")
nlp.begin_training() nlp.initialize()
list(nlp.pipe(["hi", ""])) list(nlp.pipe(["hi", ""]))

View File

@ -223,15 +223,13 @@ def test_issue3611():
textcat.add_label(label) textcat.add_label(label)
# training the network # training the network
with nlp.select_pipes(enable="textcat"): with nlp.select_pipes(enable="textcat"):
optimizer = nlp.begin_training() optimizer = nlp.initialize()
for i in range(3): for i in range(3):
losses = {} losses = {}
batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001)) batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
for batch in batches: for batch in batches:
nlp.update( nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses)
examples=batch, sgd=optimizer, drop=0.1, losses=losses,
)
def test_issue3625(): def test_issue3625():
@ -264,13 +262,11 @@ def test_issue3830_no_subtok():
"min_action_freq": 30, "min_action_freq": 30,
"update_with_oracle_cut_size": 100, "update_with_oracle_cut_size": 100,
} }
model = registry.make_from_config({"model": DEFAULT_PARSER_MODEL}, validate=True)[ model = registry.resolve({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"]
"model"
]
parser = DependencyParser(Vocab(), model, **config) parser = DependencyParser(Vocab(), model, **config)
parser.add_label("nsubj") parser.add_label("nsubj")
assert "subtok" not in parser.labels assert "subtok" not in parser.labels
parser.begin_training(lambda: [_parser_example(parser)]) parser.initialize(lambda: [_parser_example(parser)])
assert "subtok" not in parser.labels assert "subtok" not in parser.labels
@ -281,13 +277,11 @@ def test_issue3830_with_subtok():
"min_action_freq": 30, "min_action_freq": 30,
"update_with_oracle_cut_size": 100, "update_with_oracle_cut_size": 100,
} }
model = registry.make_from_config({"model": DEFAULT_PARSER_MODEL}, validate=True)[ model = registry.resolve({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"]
"model"
]
parser = DependencyParser(Vocab(), model, **config) parser = DependencyParser(Vocab(), model, **config)
parser.add_label("nsubj") parser.add_label("nsubj")
assert "subtok" not in parser.labels assert "subtok" not in parser.labels
parser.begin_training(lambda: [_parser_example(parser)]) parser.initialize(lambda: [_parser_example(parser)])
assert "subtok" in parser.labels assert "subtok" in parser.labels
@ -346,7 +340,7 @@ def test_issue3880():
nlp.add_pipe("parser").add_label("dep") nlp.add_pipe("parser").add_label("dep")
nlp.add_pipe("ner").add_label("PERSON") nlp.add_pipe("ner").add_label("PERSON")
nlp.add_pipe("tagger").add_label("NN") nlp.add_pipe("tagger").add_label("NN")
nlp.begin_training() nlp.initialize()
for doc in nlp.pipe(texts): for doc in nlp.pipe(texts):
pass pass
@ -394,7 +388,7 @@ def test_issue3959():
def test_issue3962(en_vocab): def test_issue3962(en_vocab):
""" Ensure that as_doc does not result in out-of-bound access of tokens. """Ensure that as_doc does not result in out-of-bound access of tokens.
This is achieved by setting the head to itself if it would lie out of the span otherwise.""" This is achieved by setting the head to itself if it would lie out of the span otherwise."""
# fmt: off # fmt: off
words = ["He", "jests", "at", "scars", ",", "that", "never", "felt", "a", "wound", "."] words = ["He", "jests", "at", "scars", ",", "that", "never", "felt", "a", "wound", "."]
@ -432,7 +426,7 @@ def test_issue3962(en_vocab):
def test_issue3962_long(en_vocab): def test_issue3962_long(en_vocab):
""" Ensure that as_doc does not result in out-of-bound access of tokens. """Ensure that as_doc does not result in out-of-bound access of tokens.
This is achieved by setting the head to itself if it would lie out of the span otherwise.""" This is achieved by setting the head to itself if it would lie out of the span otherwise."""
# fmt: off # fmt: off
words = ["He", "jests", "at", "scars", ".", "They", "never", "felt", "a", "wound", "."] words = ["He", "jests", "at", "scars", ".", "They", "never", "felt", "a", "wound", "."]
@ -467,8 +461,7 @@ def test_issue3962_long(en_vocab):
def test_issue3972(en_vocab): def test_issue3972(en_vocab):
"""Test that the PhraseMatcher returns duplicates for duplicate match IDs. """Test that the PhraseMatcher returns duplicates for duplicate match IDs."""
"""
matcher = PhraseMatcher(en_vocab) matcher = PhraseMatcher(en_vocab)
matcher.add("A", [Doc(en_vocab, words=["New", "York"])]) matcher.add("A", [Doc(en_vocab, words=["New", "York"])])
matcher.add("B", [Doc(en_vocab, words=["New", "York"])]) matcher.add("B", [Doc(en_vocab, words=["New", "York"])])

View File

@ -19,8 +19,7 @@ from ..util import make_tempdir
def test_issue4002(en_vocab): def test_issue4002(en_vocab):
"""Test that the PhraseMatcher can match on overwritten NORM attributes. """Test that the PhraseMatcher can match on overwritten NORM attributes."""
"""
matcher = PhraseMatcher(en_vocab, attr="NORM") matcher = PhraseMatcher(en_vocab, attr="NORM")
pattern1 = Doc(en_vocab, words=["c", "d"]) pattern1 = Doc(en_vocab, words=["c", "d"])
assert [t.norm_ for t in pattern1] == ["c", "d"] assert [t.norm_ for t in pattern1] == ["c", "d"]
@ -66,15 +65,13 @@ def test_issue4030():
textcat.add_label(label) textcat.add_label(label)
# training the network # training the network
with nlp.select_pipes(enable="textcat"): with nlp.select_pipes(enable="textcat"):
optimizer = nlp.begin_training() optimizer = nlp.initialize()
for i in range(3): for i in range(3):
losses = {} losses = {}
batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001)) batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
for batch in batches: for batch in batches:
nlp.update( nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses)
examples=batch, sgd=optimizer, drop=0.1, losses=losses,
)
# processing of an empty doc should result in 0.0 for all categories # processing of an empty doc should result in 0.0 for all categories
doc = nlp("") doc = nlp("")
assert doc.cats["offensive"] == 0.0 assert doc.cats["offensive"] == 0.0
@ -87,7 +84,7 @@ def test_issue4042():
# add ner pipe # add ner pipe
ner = nlp.add_pipe("ner") ner = nlp.add_pipe("ner")
ner.add_label("SOME_LABEL") ner.add_label("SOME_LABEL")
nlp.begin_training() nlp.initialize()
# Add entity ruler # Add entity ruler
patterns = [ patterns = [
{"label": "MY_ORG", "pattern": "Apple"}, {"label": "MY_ORG", "pattern": "Apple"},
@ -118,7 +115,7 @@ def test_issue4042_bug2():
# add ner pipe # add ner pipe
ner1 = nlp1.add_pipe("ner") ner1 = nlp1.add_pipe("ner")
ner1.add_label("SOME_LABEL") ner1.add_label("SOME_LABEL")
nlp1.begin_training() nlp1.initialize()
# add a new label to the doc # add a new label to the doc
doc1 = nlp1("What do you think about Apple ?") doc1 = nlp1("What do you think about Apple ?")
assert len(ner1.labels) == 1 assert len(ner1.labels) == 1
@ -244,7 +241,7 @@ def test_issue4267():
nlp = English() nlp = English()
ner = nlp.add_pipe("ner") ner = nlp.add_pipe("ner")
ner.add_label("PEOPLE") ner.add_label("PEOPLE")
nlp.begin_training() nlp.initialize()
assert "ner" in nlp.pipe_names assert "ner" in nlp.pipe_names
# assert that we have correct IOB annotations # assert that we have correct IOB annotations
doc1 = nlp("hi") doc1 = nlp("hi")
@ -299,7 +296,7 @@ def test_issue4313():
config = {} config = {}
ner = nlp.create_pipe("ner", config=config) ner = nlp.create_pipe("ner", config=config)
ner.add_label("SOME_LABEL") ner.add_label("SOME_LABEL")
ner.begin_training(lambda: []) ner.initialize(lambda: [])
# add a new label to the doc # add a new label to the doc
doc = nlp("What do you think about Apple ?") doc = nlp("What do you think about Apple ?")
assert len(ner.labels) == 1 assert len(ner.labels) == 1
@ -327,7 +324,7 @@ def test_issue4348():
TRAIN_DATA = [example, example] TRAIN_DATA = [example, example]
tagger = nlp.add_pipe("tagger") tagger = nlp.add_pipe("tagger")
tagger.add_label("A") tagger.add_label("A")
optimizer = nlp.begin_training() optimizer = nlp.initialize()
for i in range(5): for i in range(5):
losses = {} losses = {}
batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001)) batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))

View File

@ -180,7 +180,7 @@ def test_issue4725_2():
vocab.set_vector("dog", data[1]) vocab.set_vector("dog", data[1])
nlp = English(vocab=vocab) nlp = English(vocab=vocab)
nlp.add_pipe("ner") nlp.add_pipe("ner")
nlp.begin_training() nlp.initialize()
docs = ["Kurt is in London."] * 10 docs = ["Kurt is in London."] * 10
for _ in nlp.pipe(docs, batch_size=2, n_process=2): for _ in nlp.pipe(docs, batch_size=2, n_process=2):
pass pass

View File

@ -64,7 +64,7 @@ def tagger():
# 1. no model leads to error in serialization, # 1. no model leads to error in serialization,
# 2. the affected line is the one for model serialization # 2. the affected line is the one for model serialization
tagger.add_label("A") tagger.add_label("A")
nlp.begin_training() nlp.initialize()
return tagger return tagger
@ -85,7 +85,7 @@ def entity_linker():
# need to add model for two reasons: # need to add model for two reasons:
# 1. no model leads to error in serialization, # 1. no model leads to error in serialization,
# 2. the affected line is the one for model serialization # 2. the affected line is the one for model serialization
nlp.begin_training() nlp.initialize()
return entity_linker return entity_linker

Some files were not shown because too many files have changed in this diff Show More