performance per entity type

This commit is contained in:
svlandeg 2019-06-14 19:55:46 +02:00
parent b312f2d0e7
commit 81731907ba
5 changed files with 114 additions and 80 deletions

View File

@ -15,10 +15,10 @@ INPUT_DIM = 300 # dimension of pre-trained vectors
DESC_WIDTH = 64
def create_kb(nlp, max_entities_per_alias, min_occ,
def create_kb(nlp, max_entities_per_alias, min_entity_freq, min_occ,
entity_def_output, entity_descr_output,
count_input, prior_prob_input, to_print=False):
""" Create the knowledge base from Wikidata entries """
# Create the knowledge base from Wikidata entries
kb = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=DESC_WIDTH)
# disable this part of the pipeline when rerunning the KB generation from preprocessed files
@ -37,21 +37,26 @@ def create_kb(nlp, max_entities_per_alias, min_occ,
title_to_id = _get_entity_to_id(entity_def_output)
id_to_descr = _get_id_to_description(entity_descr_output)
title_list = list(title_to_id.keys())
# TODO: remove this filter (just for quicker testing of code)
# title_list = title_list[0:342]
# title_to_id = {t: title_to_id[t] for t in title_list}
entity_list = [title_to_id[x] for x in title_list]
# Currently keeping entities from the KB where there is no description - putting a default void description
description_list = [id_to_descr.get(x, "No description defined") for x in entity_list]
print()
print(" * _get_entity_frequencies", datetime.datetime.now())
print()
entity_frequencies = wp.get_entity_frequencies(count_input=count_input, entities=title_list)
entity_frequencies = wp.get_all_frequencies(count_input=count_input)
# filter the entities for in the KB by frequency, because there's just too much data otherwise
filtered_title_to_id = dict()
entity_list = list()
description_list = list()
frequency_list = list()
for title, entity in title_to_id.items():
freq = entity_frequencies.get(title, 0)
desc = id_to_descr.get(entity, None)
if desc and freq > min_entity_freq:
entity_list.append(entity)
description_list.append(desc)
frequency_list.append(freq)
filtered_title_to_id[title] = entity
print("Kept", len(filtered_title_to_id.keys()), "out of", len(title_to_id.keys()), "titles")
print()
print(" * train entity encoder", datetime.datetime.now())
@ -67,12 +72,12 @@ def create_kb(nlp, max_entities_per_alias, min_occ,
print()
print(" * adding", len(entity_list), "entities", datetime.datetime.now())
kb.set_entities(entity_list=entity_list, prob_list=entity_frequencies, vector_list=embeddings)
kb.set_entities(entity_list=entity_list, prob_list=frequency_list, vector_list=embeddings)
print()
print(" * adding aliases", datetime.datetime.now())
print()
_add_aliases(kb, title_to_id=title_to_id,
_add_aliases(kb, title_to_id=filtered_title_to_id,
max_entities_per_alias=max_entities_per_alias, min_occ=min_occ,
prior_prob_input=prior_prob_input)

View File

@ -21,7 +21,7 @@ ENTITY_FILE = "gold_entities.csv"
def create_training(entity_def_input, training_output):
wp_to_id = kb_creator._get_entity_to_id(entity_def_input)
_process_wikipedia_texts(wp_to_id, training_output, limit=100000000) # TODO: full dataset 100000000
_process_wikipedia_texts(wp_to_id, training_output, limit=100000000)
def _process_wikipedia_texts(wp_to_id, training_output, limit=None):

View File

@ -29,6 +29,7 @@ NLP_2_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/nlp_2'
TRAINING_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/training_data_nel/'
MAX_CANDIDATES = 10
MIN_ENTITY_FREQ = 200
MIN_PAIR_OCC = 5
DOC_SENT_CUTOFF = 2
EPOCHS = 10
@ -46,14 +47,14 @@ def run_pipeline():
# one-time methods to create KB and write to file
to_create_prior_probs = False
to_create_entity_counts = False
to_create_kb = False # TODO: entity_defs should also contain entities not in the KB
to_create_kb = True
# read KB back in from file
to_read_kb = False
to_test_kb = False
# create training dataset
create_wp_training = True
create_wp_training = False
# train the EL pipe
train_pipe = False
@ -84,13 +85,14 @@ def run_pipeline():
if to_create_kb:
print("STEP 3a: to_create_kb", datetime.datetime.now())
kb_1 = kb_creator.create_kb(nlp_1,
max_entities_per_alias=MAX_CANDIDATES,
min_occ=MIN_PAIR_OCC,
entity_def_output=ENTITY_DEFS,
entity_descr_output=ENTITY_DESCR,
count_input=ENTITY_COUNTS,
prior_prob_input=PRIOR_PROB,
to_print=False)
max_entities_per_alias=MAX_CANDIDATES,
min_entity_freq=MIN_ENTITY_FREQ,
min_occ=MIN_PAIR_OCC,
entity_def_output=ENTITY_DEFS,
entity_descr_output=ENTITY_DESCR,
count_input=ENTITY_COUNTS,
prior_prob_input=PRIOR_PROB,
to_print=False)
print("kb entities:", kb_1.get_size_entities())
print("kb aliases:", kb_1.get_size_aliases())
print()
@ -112,7 +114,7 @@ def run_pipeline():
# test KB
if to_test_kb:
run_el.run_kb_toy_example(kb=kb_2)
test_kb(kb_2)
print()
# STEP 5: create a training dataset from WP
@ -121,10 +123,18 @@ def run_pipeline():
training_set_creator.create_training(entity_def_input=ENTITY_DEFS, training_output=TRAINING_DIR)
# STEP 6: create the entity linking pipe
el_pipe = nlp_2.create_pipe(name='entity_linker', config={"doc_cutoff": DOC_SENT_CUTOFF})
el_pipe.set_kb(kb_2)
nlp_2.add_pipe(el_pipe, last=True)
other_pipes = [pipe for pipe in nlp_2.pipe_names if pipe != "entity_linker"]
with nlp_2.disable_pipes(*other_pipes): # only train Entity Linking
nlp_2.begin_training()
if train_pipe:
print("STEP 6: training Entity Linking pipe", datetime.datetime.now())
train_limit = 50
dev_limit = 10
train_limit = 10
dev_limit = 2
print("Training on", train_limit, "articles")
print("Dev testing on", dev_limit, "articles")
print()
@ -141,14 +151,6 @@ def run_pipeline():
limit=dev_limit,
to_print=False)
el_pipe = nlp_2.create_pipe(name='entity_linker', config={"doc_cutoff": DOC_SENT_CUTOFF})
el_pipe.set_kb(kb_2)
nlp_2.add_pipe(el_pipe, last=True)
other_pipes = [pipe for pipe in nlp_2.pipe_names if pipe != "entity_linker"]
with nlp_2.disable_pipes(*other_pipes): # only train Entity Linking
nlp_2.begin_training()
for itn in range(EPOCHS):
random.shuffle(train_data)
losses = {}
@ -180,30 +182,32 @@ def run_pipeline():
# print(" measuring accuracy 1-1")
el_pipe.context_weight = 1
el_pipe.prior_weight = 1
dev_acc_1_1 = _measure_accuracy(dev_data, el_pipe)
train_acc_1_1 = _measure_accuracy(train_data, el_pipe)
print("train/dev acc combo:", round(train_acc_1_1, 2), round(dev_acc_1_1, 2))
dev_acc_1_1, dev_acc_1_1_dict = _measure_accuracy(dev_data, el_pipe)
print("dev acc combo:", round(dev_acc_1_1, 3), [(x, round(y, 3)) for x, y in dev_acc_1_1_dict.items()])
train_acc_1_1, train_acc_1_1_dict = _measure_accuracy(train_data, el_pipe)
print("train acc combo:", round(train_acc_1_1, 3), [(x, round(y, 3)) for x, y in train_acc_1_1_dict.items()])
# baseline using only prior probabilities
el_pipe.context_weight = 0
el_pipe.prior_weight = 1
dev_acc_0_1 = _measure_accuracy(dev_data, el_pipe)
train_acc_0_1 = _measure_accuracy(train_data, el_pipe)
print("train/dev acc prior:", round(train_acc_0_1, 2), round(dev_acc_0_1, 2))
dev_acc_0_1, dev_acc_0_1_dict = _measure_accuracy(dev_data, el_pipe)
print("dev acc prior:", round(dev_acc_0_1, 3), [(x, round(y, 3)) for x, y in dev_acc_0_1_dict.items()])
train_acc_0_1, train_acc_0_1_dict = _measure_accuracy(train_data, el_pipe)
print("train acc prior:", round(train_acc_0_1, 3), [(x, round(y, 3)) for x, y in train_acc_0_1_dict.items()])
# using only context
el_pipe.context_weight = 1
el_pipe.prior_weight = 0
dev_acc_1_0 = _measure_accuracy(dev_data, el_pipe)
train_acc_1_0 = _measure_accuracy(train_data, el_pipe)
print("train/dev acc context:", round(train_acc_1_0, 2), round(dev_acc_1_0, 2))
dev_acc_1_0, dev_acc_1_0_dict = _measure_accuracy(dev_data, el_pipe)
print("dev acc context:", round(dev_acc_1_0, 3), [(x, round(y, 3)) for x, y in dev_acc_1_0_dict.items()])
train_acc_1_0, train_acc_1_0_dict = _measure_accuracy(train_data, el_pipe)
print("train acc context:", round(train_acc_1_0, 3), [(x, round(y, 3)) for x, y in train_acc_1_0_dict.items()])
print()
# reset for follow-up tests
el_pipe.context_weight = 1
el_pipe.prior_weight = 1
if to_test_pipeline:
print()
print("STEP 8: applying Entity Linking to toy example", datetime.datetime.now())
@ -230,8 +234,8 @@ def run_pipeline():
def _measure_accuracy(data, el_pipe):
correct = 0
incorrect = 0
correct_by_label = dict()
incorrect_by_label = dict()
docs = [d for d, g in data if len(d) > 0]
docs = el_pipe.pipe(docs)
@ -245,31 +249,53 @@ def _measure_accuracy(data, el_pipe):
correct_entries_per_article[str(start) + "-" + str(end)] = gold_kb
for ent in doc.ents:
if ent.label_ == "PERSON": # TODO: expand to other types
pred_entity = ent.kb_id_
start = ent.start_char
end = ent.end_char
gold_entity = correct_entries_per_article.get(str(start) + "-" + str(end), None)
# the gold annotations are not complete so we can't evaluate missing annotations as 'wrong'
if gold_entity is not None:
if gold_entity == pred_entity:
correct += 1
else:
incorrect += 1
ent_label = ent.label_
pred_entity = ent.kb_id_
start = ent.start_char
end = ent.end_char
gold_entity = correct_entries_per_article.get(str(start) + "-" + str(end), None)
# the gold annotations are not complete so we can't evaluate missing annotations as 'wrong'
if gold_entity is not None:
if gold_entity == pred_entity:
correct = correct_by_label.get(ent_label, 0)
correct_by_label[ent_label] = correct + 1
else:
incorrect = incorrect_by_label.get(ent_label, 0)
incorrect_by_label[ent_label] = incorrect + 1
except Exception as e:
print("Error assessing accuracy", e)
if correct == incorrect == 0:
return 0
acc_by_label = dict()
total_correct = 0
total_incorrect = 0
for label, correct in correct_by_label.items():
incorrect = incorrect_by_label.get(label, 0)
total_correct += correct
total_incorrect += incorrect
if correct == incorrect == 0:
acc_by_label[label] = 0
else:
acc_by_label[label] = correct / (correct + incorrect)
acc = 0
if not (total_correct == total_incorrect == 0):
acc = total_correct / (total_correct + total_incorrect)
return acc, acc_by_label
acc = correct / (correct + incorrect)
return acc
def test_kb(kb):
for mention in ("Bush", "Douglas Adams", "Homer", "Brazil", "China"):
candidates = kb.get_candidates(mention)
print("generating candidates for " + mention + " :")
for c in candidates:
print(" ", c.prior_prob, c.alias_, "-->", c.entity_ + " (freq=" + str(c.entity_freq) + ")")
print()
def run_el_toy_example(nlp):
text = "In The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, " \
"Douglas reminds us to always bring our towel. " \
"Douglas reminds us to always bring our towel, even in China or Brazil. " \
"The main character in Doug's novel is the man Arthur Dent, " \
"but Douglas doesn't write about George Washington or Homer Simpson."
doc = nlp(text)

View File

@ -1,7 +1,6 @@
# coding: utf-8
from __future__ import unicode_literals
import re
import bz2
import json
import datetime
@ -14,7 +13,7 @@ def read_wikidata_entities_json(limit=None, to_print=False):
""" Read the JSON wiki data and parse out the entities. Takes about 7u30 to parse 55M lines. """
lang = 'en'
prop_filter = {'P31': {'Q5', 'Q15632617'}} # currently defined as OR: one property suffices to be selected
# prop_filter = {'P31': {'Q5', 'Q15632617'}} # currently defined as OR: one property suffices to be selected
site_filter = 'enwiki'
title_to_id = dict()
@ -41,18 +40,19 @@ def read_wikidata_entities_json(limit=None, to_print=False):
entry_type = obj["type"]
if entry_type == "item":
# filtering records on their properties
keep = False
# filtering records on their properties (currently disabled to get ALL data)
# keep = False
keep = True
claims = obj["claims"]
for prop, value_set in prop_filter.items():
claim_property = claims.get(prop, None)
if claim_property:
for cp in claim_property:
cp_id = cp['mainsnak'].get('datavalue', {}).get('value', {}).get('id')
cp_rank = cp['rank']
if cp_rank != "deprecated" and cp_id in value_set:
keep = True
# for prop, value_set in prop_filter.items():
# claim_property = claims.get(prop, None)
# if claim_property:
# for cp in claim_property:
# cp_id = cp['mainsnak'].get('datavalue', {}).get('value', {}).get('id')
# cp_rank = cp['rank']
# if cp_rank != "deprecated" and cp_id in value_set:
# keep = True
if keep:
unique_id = obj["id"]
@ -70,6 +70,7 @@ def read_wikidata_entities_json(limit=None, to_print=False):
if to_print:
print("prop:", prop, cp_values)
found_link = False
if parse_sitelinks:
site_value = obj["sitelinks"].get(site_filter, None)
if site_value:
@ -77,6 +78,7 @@ def read_wikidata_entities_json(limit=None, to_print=False):
if to_print:
print(site_filter, ":", site)
title_to_id[site] = unique_id
found_link = True
if parse_labels:
labels = obj["labels"]
@ -86,7 +88,7 @@ def read_wikidata_entities_json(limit=None, to_print=False):
if to_print:
print("label (" + lang + "):", lang_label["value"])
if parse_descriptions:
if found_link and parse_descriptions:
descriptions = obj["descriptions"]
if descriptions:
lang_descr = descriptions.get(lang, None)

View File

@ -175,7 +175,7 @@ def write_entity_counts(prior_prob_input, count_output, to_print=False):
print("Total count:", total_count)
def get_entity_frequencies(count_input, entities):
def get_all_frequencies(count_input):
entity_to_count = dict()
with open(count_input, 'r', encoding='utf8') as csvfile:
csvreader = csv.reader(csvfile, delimiter='|')
@ -184,4 +184,5 @@ def get_entity_frequencies(count_input, entities):
for row in csvreader:
entity_to_count[row[0]] = int(row[1])
return [entity_to_count.get(e, 0) for e in entities]
return entity_to_count