mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-27 02:16:32 +03:00
update examples
This commit is contained in:
parent
e29a33449d
commit
821b2d4e63
|
@ -15,6 +15,7 @@ next: /usage/projects
|
||||||
> ````python
|
> ````python
|
||||||
> from thinc.api import Model, chain
|
> from thinc.api import Model, chain
|
||||||
>
|
>
|
||||||
|
> @spacy.registry.architectures.register("model.v1")
|
||||||
> def build_model(width: int, classes: int) -> Model:
|
> def build_model(width: int, classes: int) -> Model:
|
||||||
> tok2vec = build_tok2vec(width)
|
> tok2vec = build_tok2vec(width)
|
||||||
> output_layer = build_output_layer(width, classes)
|
> output_layer = build_output_layer(width, classes)
|
||||||
|
@ -24,10 +25,12 @@ next: /usage/projects
|
||||||
|
|
||||||
A **model architecture** is a function that wires up a
|
A **model architecture** is a function that wires up a
|
||||||
[Thinc `Model`](https://thinc.ai/docs/api-model) instance. It describes the
|
[Thinc `Model`](https://thinc.ai/docs/api-model) instance. It describes the
|
||||||
neural network that is run internally as part of a component in a spaCy
|
neural network that is run internally as part of a component in a spaCy pipeline.
|
||||||
pipeline. To define the actual architecture, you can implement your logic in
|
To define the actual architecture, you can implement your logic in
|
||||||
Thinc directly, but you can also use Thinc as a thin wrapper around frameworks
|
Thinc directly, or you can use Thinc as a thin wrapper around frameworks
|
||||||
such as PyTorch, TensorFlow or MXNet.
|
such as PyTorch, TensorFlow and MXNet. Each Model can also be used as a sublayer
|
||||||
|
of a larger network, allowing you to freely combine implementations from different
|
||||||
|
frameworks into one `Thinc` Model.
|
||||||
|
|
||||||
spaCy's built-in components require a `Model` instance to be passed to them via
|
spaCy's built-in components require a `Model` instance to be passed to them via
|
||||||
the config system. To change the model architecture of an existing component,
|
the config system. To change the model architecture of an existing component,
|
||||||
|
@ -37,6 +40,17 @@ won't be able to change it anymore. The architecture is like a recipe for the
|
||||||
network, and you can't change the recipe once the dish has already been
|
network, and you can't change the recipe once the dish has already been
|
||||||
prepared. You have to make a new one.
|
prepared. You have to make a new one.
|
||||||
|
|
||||||
|
```ini
|
||||||
|
### config.cfg (excerpt)
|
||||||
|
[components.tagger]
|
||||||
|
factory = "tagger"
|
||||||
|
|
||||||
|
[components.tagger.model]
|
||||||
|
@architectures = "model.v1"
|
||||||
|
width = 512
|
||||||
|
classes = 16
|
||||||
|
```
|
||||||
|
|
||||||
## Type signatures {#type-sigs}
|
## Type signatures {#type-sigs}
|
||||||
|
|
||||||
<!-- TODO: update example, maybe simplify definition? -->
|
<!-- TODO: update example, maybe simplify definition? -->
|
||||||
|
@ -44,17 +58,15 @@ prepared. You have to make a new one.
|
||||||
> #### Example
|
> #### Example
|
||||||
>
|
>
|
||||||
> ```python
|
> ```python
|
||||||
> @spacy.registry.architectures.register("spacy.Tagger.v1")
|
> from typing import List
|
||||||
> def build_tagger_model(
|
> from thinc.api import Model, chain
|
||||||
> tok2vec: Model[List[Doc], List[Floats2d]], nO: Optional[int] = None
|
> from thinc.types import Floats2d
|
||||||
> ) -> Model[List[Doc], List[Floats2d]]:
|
> def chain_model(
|
||||||
> t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
|
> tok2vec: Model[List[Doc], List[Floats2d]],
|
||||||
> output_layer = Softmax(nO, t2v_width, init_W=zero_init)
|
> layer1: Model[List[Floats2d], Floats2d],
|
||||||
> softmax = with_array(output_layer)
|
> layer2: Model[Floats2d, Floats2d]
|
||||||
> model = chain(tok2vec, softmax)
|
> ) -> Model[List[Doc], Floats2d]:
|
||||||
> model.set_ref("tok2vec", tok2vec)
|
> model = chain(tok2vec, layer1, layer2)
|
||||||
> model.set_ref("softmax", output_layer)
|
|
||||||
> model.set_ref("output_layer", output_layer)
|
|
||||||
> return model
|
> return model
|
||||||
> ```
|
> ```
|
||||||
|
|
||||||
|
@ -65,7 +77,7 @@ list, and the outputs will be a dictionary. Both `typing.List` and `typing.Dict`
|
||||||
are also generics, allowing you to be more specific about the data. For
|
are also generics, allowing you to be more specific about the data. For
|
||||||
instance, you can write ~~Model[List[Doc], Dict[str, float]]~~ to specify that
|
instance, you can write ~~Model[List[Doc], Dict[str, float]]~~ to specify that
|
||||||
the model expects a list of [`Doc`](/api/doc) objects as input, and returns a
|
the model expects a list of [`Doc`](/api/doc) objects as input, and returns a
|
||||||
dictionary mapping strings to floats. Some of the most common types you'll see
|
dictionary mapping of strings to floats. Some of the most common types you'll see
|
||||||
are:
|
are:
|
||||||
|
|
||||||
| Type | Description |
|
| Type | Description |
|
||||||
|
|
Loading…
Reference in New Issue
Block a user