Merge pull request #12994 from explosion/docs/llm_main

Synch `llm_develop` with `llm_main`
This commit is contained in:
Raphael Mitsch 2023-09-20 10:05:40 +02:00 committed by GitHub
commit 830eba5426
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 12 additions and 16 deletions

View File

@ -19,26 +19,20 @@ prototyping** and **prompting**, and turning unstructured responses into
An LLM component is implemented through the `LLMWrapper` class. It is accessible
through a generic `llm`
[component factory](https://spacy.io/usage/processing-pipelines#custom-components-factories)
as well as through task-specific component factories:
- `llm_ner`
- `llm_spancat`
- `llm_rel`
- `llm_textcat`
- `llm_sentiment`
- `llm_summarization`
as well as through task-specific component factories: `llm_ner`, `llm_spancat`, `llm_rel`,
`llm_textcat`, `llm_sentiment` and `llm_summarization`.
### LLMWrapper.\_\_init\_\_ {id="init",tag="method"}
> #### Example
>
> ```python
> # Construction via add_pipe with default GPT3.5 model and NER task
> # Construction via add_pipe with the default GPT 3.5 model and an explicitly defined task
> config = {"task": {"@llm_tasks": "spacy.NER.v3", "labels": ["PERSON", "ORGANISATION", "LOCATION"]}}
> llm = nlp.add_pipe("llm")
> llm = nlp.add_pipe("llm", config=config)
>
> # Construction via add_pipe with task-specific factory and default GPT3.5 model
> parser = nlp.add_pipe("llm-ner", config=config)
> # Construction via add_pipe with a task-specific factory and default GPT3.5 model
> llm = nlp.add_pipe("llm-ner")
>
> # Construction from class
> from spacy_llm.pipeline import LLMWrapper
@ -956,6 +950,8 @@ provider's API.
> config = {"temperature": 0.0}
> ```
Currently, these models are provided as part of the core library:
| Model | Provider | Supported names | Default name | Default config |
| ----------------------------- | --------- | ---------------------------------------------------------------------------------------- | ---------------------- | ------------------------------------ |
| `spacy.GPT-4.v1` | OpenAI | `["gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314"]` | `"gpt-4"` | `{}` |
@ -1036,6 +1032,8 @@ These models all take the same parameters:
> name = "llama2-7b-hf"
> ```
Currently, these models are provided as part of the core library:
| Model | Provider | Supported names | HF directory |
| -------------------- | --------------- | ------------------------------------------------------------------------------------------------------------ | -------------------------------------- |
| `spacy.Dolly.v1` | Databricks | `["dolly-v2-3b", "dolly-v2-7b", "dolly-v2-12b"]` | https://huggingface.co/databricks |
@ -1044,8 +1042,6 @@ These models all take the same parameters:
| `spacy.StableLM.v1` | Stability AI | `["stablelm-base-alpha-3b", "stablelm-base-alpha-7b", "stablelm-tuned-alpha-3b", "stablelm-tuned-alpha-7b"]` | https://huggingface.co/stabilityai |
| `spacy.OpenLLaMA.v1` | OpenLM Research | `["open_llama_3b", "open_llama_7b", "open_llama_7b_v2", "open_llama_13b"]` | https://huggingface.co/openlm-research |
See the "HF directory" for more details on each of the models.
Note that Hugging Face will download the model the first time you use it - you
can
[define the cached directory](https://huggingface.co/docs/huggingface_hub/main/en/guides/manage-cache)

View File

@ -1299,9 +1299,9 @@ correct type.
```python {title="functions.py",highlight="1"}
@spacy.registry.tokenizers("bert_word_piece_tokenizer")
def create_whitespace_tokenizer(vocab_file: str, lowercase: bool):
def create_bert_tokenizer(vocab_file: str, lowercase: bool):
def create_tokenizer(nlp):
return BertWordPieceTokenizer(nlp.vocab, vocab_file, lowercase)
return BertTokenizer(nlp.vocab, vocab_file, lowercase)
return create_tokenizer
```