mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
Error handling in nlp.pipe (#6817)
* add error handler for pipe methods * add unit tests * remove pipe method that are the same as their base class * have Language keep track of a default error handler * cleanup * formatting * small refactor * add documentation
This commit is contained in:
parent
cc18f3f23c
commit
837a4f53c2
|
@ -8,7 +8,7 @@ from contextlib import contextmanager
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import warnings
|
import warnings
|
||||||
from thinc.api import Model, get_current_ops, Config, Optimizer
|
from thinc.api import get_current_ops, Config, Optimizer
|
||||||
import srsly
|
import srsly
|
||||||
import multiprocessing as mp
|
import multiprocessing as mp
|
||||||
from itertools import chain, cycle
|
from itertools import chain, cycle
|
||||||
|
@ -20,7 +20,7 @@ from .pipe_analysis import validate_attrs, analyze_pipes, print_pipe_analysis
|
||||||
from .training import Example, validate_examples
|
from .training import Example, validate_examples
|
||||||
from .training.initialize import init_vocab, init_tok2vec
|
from .training.initialize import init_vocab, init_tok2vec
|
||||||
from .scorer import Scorer
|
from .scorer import Scorer
|
||||||
from .util import registry, SimpleFrozenList, _pipe
|
from .util import registry, SimpleFrozenList, _pipe, raise_error
|
||||||
from .util import SimpleFrozenDict, combine_score_weights, CONFIG_SECTION_ORDER
|
from .util import SimpleFrozenDict, combine_score_weights, CONFIG_SECTION_ORDER
|
||||||
from .lang.tokenizer_exceptions import URL_MATCH, BASE_EXCEPTIONS
|
from .lang.tokenizer_exceptions import URL_MATCH, BASE_EXCEPTIONS
|
||||||
from .lang.punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
|
from .lang.punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
|
||||||
|
@ -176,6 +176,7 @@ class Language:
|
||||||
create_tokenizer = registry.resolve(tokenizer_cfg)["tokenizer"]
|
create_tokenizer = registry.resolve(tokenizer_cfg)["tokenizer"]
|
||||||
self.tokenizer = create_tokenizer(self)
|
self.tokenizer = create_tokenizer(self)
|
||||||
self.batch_size = batch_size
|
self.batch_size = batch_size
|
||||||
|
self.default_error_handler = raise_error
|
||||||
|
|
||||||
def __init_subclass__(cls, **kwargs):
|
def __init_subclass__(cls, **kwargs):
|
||||||
super().__init_subclass__(**kwargs)
|
super().__init_subclass__(**kwargs)
|
||||||
|
@ -981,11 +982,16 @@ class Language:
|
||||||
continue
|
continue
|
||||||
if not hasattr(proc, "__call__"):
|
if not hasattr(proc, "__call__"):
|
||||||
raise ValueError(Errors.E003.format(component=type(proc), name=name))
|
raise ValueError(Errors.E003.format(component=type(proc), name=name))
|
||||||
|
error_handler = self.default_error_handler
|
||||||
|
if hasattr(proc, "get_error_handler"):
|
||||||
|
error_handler = proc.get_error_handler()
|
||||||
try:
|
try:
|
||||||
doc = proc(doc, **component_cfg.get(name, {}))
|
doc = proc(doc, **component_cfg.get(name, {}))
|
||||||
except KeyError as e:
|
except KeyError as e:
|
||||||
# This typically happens if a component is not initialized
|
# This typically happens if a component is not initialized
|
||||||
raise ValueError(Errors.E109.format(name=name)) from e
|
raise ValueError(Errors.E109.format(name=name)) from e
|
||||||
|
except Exception as e:
|
||||||
|
error_handler(name, proc, [doc], e)
|
||||||
if doc is None:
|
if doc is None:
|
||||||
raise ValueError(Errors.E005.format(name=name))
|
raise ValueError(Errors.E005.format(name=name))
|
||||||
return doc
|
return doc
|
||||||
|
@ -1274,6 +1280,26 @@ class Language:
|
||||||
self._optimizer = self.create_optimizer()
|
self._optimizer = self.create_optimizer()
|
||||||
return self._optimizer
|
return self._optimizer
|
||||||
|
|
||||||
|
def set_error_handler(
|
||||||
|
self,
|
||||||
|
error_handler: Callable[
|
||||||
|
[str, Callable[[Doc], Doc], List[Doc], Exception], None
|
||||||
|
],
|
||||||
|
):
|
||||||
|
"""Set an error handler object for all the components in the pipeline that implement
|
||||||
|
a set_error_handler function.
|
||||||
|
|
||||||
|
error_handler (Callable[[str, Callable[[Doc], Doc], List[Doc], Exception], None]):
|
||||||
|
Function that deals with a failing batch of documents. This callable function should take in
|
||||||
|
the component's name, the component itself, the offending batch of documents, and the exception
|
||||||
|
that was thrown.
|
||||||
|
DOCS: https://nightly.spacy.io/api/language#set_error_handler
|
||||||
|
"""
|
||||||
|
self.default_error_handler = error_handler
|
||||||
|
for name, pipe in self.pipeline:
|
||||||
|
if hasattr(pipe, "set_error_handler"):
|
||||||
|
pipe.set_error_handler(error_handler)
|
||||||
|
|
||||||
def evaluate(
|
def evaluate(
|
||||||
self,
|
self,
|
||||||
examples: Iterable[Example],
|
examples: Iterable[Example],
|
||||||
|
@ -1293,6 +1319,7 @@ class Language:
|
||||||
arguments for specific components.
|
arguments for specific components.
|
||||||
scorer_cfg (dict): An optional dictionary with extra keyword arguments
|
scorer_cfg (dict): An optional dictionary with extra keyword arguments
|
||||||
for the scorer.
|
for the scorer.
|
||||||
|
|
||||||
RETURNS (Scorer): The scorer containing the evaluation results.
|
RETURNS (Scorer): The scorer containing the evaluation results.
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/language#evaluate
|
DOCS: https://nightly.spacy.io/api/language#evaluate
|
||||||
|
@ -1317,7 +1344,14 @@ class Language:
|
||||||
kwargs = component_cfg.get(name, {})
|
kwargs = component_cfg.get(name, {})
|
||||||
kwargs.setdefault("batch_size", batch_size)
|
kwargs.setdefault("batch_size", batch_size)
|
||||||
for doc, eg in zip(
|
for doc, eg in zip(
|
||||||
_pipe((eg.predicted for eg in examples), pipe, kwargs), examples
|
_pipe(
|
||||||
|
(eg.predicted for eg in examples),
|
||||||
|
proc=pipe,
|
||||||
|
name=name,
|
||||||
|
default_error_handler=self.default_error_handler,
|
||||||
|
kwargs=kwargs,
|
||||||
|
),
|
||||||
|
examples,
|
||||||
):
|
):
|
||||||
eg.predicted = doc
|
eg.predicted = doc
|
||||||
end_time = timer()
|
end_time = timer()
|
||||||
|
@ -1422,7 +1456,13 @@ class Language:
|
||||||
kwargs = component_cfg.get(name, {})
|
kwargs = component_cfg.get(name, {})
|
||||||
# Allow component_cfg to overwrite the top-level kwargs.
|
# Allow component_cfg to overwrite the top-level kwargs.
|
||||||
kwargs.setdefault("batch_size", batch_size)
|
kwargs.setdefault("batch_size", batch_size)
|
||||||
f = functools.partial(_pipe, proc=proc, kwargs=kwargs)
|
f = functools.partial(
|
||||||
|
_pipe,
|
||||||
|
proc=proc,
|
||||||
|
name=name,
|
||||||
|
kwargs=kwargs,
|
||||||
|
default_error_handler=self.default_error_handler,
|
||||||
|
)
|
||||||
pipes.append(f)
|
pipes.append(f)
|
||||||
|
|
||||||
if n_process != 1:
|
if n_process != 1:
|
||||||
|
|
|
@ -96,12 +96,25 @@ class AttributeRuler(Pipe):
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/attributeruler#call
|
DOCS: https://nightly.spacy.io/api/attributeruler#call
|
||||||
"""
|
"""
|
||||||
|
error_handler = self.get_error_handler()
|
||||||
|
try:
|
||||||
|
matches = self.match(doc)
|
||||||
|
self.set_annotations(doc, matches)
|
||||||
|
return doc
|
||||||
|
except Exception as e:
|
||||||
|
error_handler(self.name, self, [doc], e)
|
||||||
|
|
||||||
|
def match(self, doc: Doc):
|
||||||
matches = self.matcher(doc, allow_missing=True)
|
matches = self.matcher(doc, allow_missing=True)
|
||||||
# Sort by the attribute ID, so that later rules have precendence
|
# Sort by the attribute ID, so that later rules have precendence
|
||||||
matches = [
|
matches = [
|
||||||
(int(self.vocab.strings[m_id]), m_id, s, e) for m_id, s, e in matches
|
(int(self.vocab.strings[m_id]), m_id, s, e) for m_id, s, e in matches
|
||||||
]
|
]
|
||||||
matches.sort()
|
matches.sort()
|
||||||
|
return matches
|
||||||
|
|
||||||
|
def set_annotations(self, doc, matches):
|
||||||
|
"""Modify the document in place"""
|
||||||
for attr_id, match_id, start, end in matches:
|
for attr_id, match_id, start, end in matches:
|
||||||
span = Span(doc, start, end, label=match_id)
|
span = Span(doc, start, end, label=match_id)
|
||||||
attrs = self.attrs[attr_id]
|
attrs = self.attrs[attr_id]
|
||||||
|
@ -121,7 +134,7 @@ class AttributeRuler(Pipe):
|
||||||
)
|
)
|
||||||
) from None
|
) from None
|
||||||
set_token_attrs(span[index], attrs)
|
set_token_attrs(span[index], attrs)
|
||||||
return doc
|
|
||||||
|
|
||||||
def load_from_tag_map(
|
def load_from_tag_map(
|
||||||
self, tag_map: Dict[str, Dict[Union[int, str], Union[int, str]]]
|
self, tag_map: Dict[str, Dict[Union[int, str], Union[int, str]]]
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
from itertools import islice
|
from typing import Optional, Iterable, Callable, Dict, Union, List
|
||||||
from typing import Optional, Iterable, Callable, Dict, Iterator, Union, List
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from itertools import islice
|
||||||
import srsly
|
import srsly
|
||||||
import random
|
import random
|
||||||
from thinc.api import CosineDistance, Model, Optimizer, Config
|
from thinc.api import CosineDistance, Model, Optimizer, Config
|
||||||
|
@ -276,34 +276,6 @@ class EntityLinker(TrainablePipe):
|
||||||
loss = loss / len(entity_encodings)
|
loss = loss / len(entity_encodings)
|
||||||
return loss, gradients
|
return loss, gradients
|
||||||
|
|
||||||
def __call__(self, doc: Doc) -> Doc:
|
|
||||||
"""Apply the pipe to a Doc.
|
|
||||||
|
|
||||||
doc (Doc): The document to process.
|
|
||||||
RETURNS (Doc): The processed Doc.
|
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/entitylinker#call
|
|
||||||
"""
|
|
||||||
kb_ids = self.predict([doc])
|
|
||||||
self.set_annotations([doc], kb_ids)
|
|
||||||
return doc
|
|
||||||
|
|
||||||
def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
|
|
||||||
"""Apply the pipe to a stream of documents. This usually happens under
|
|
||||||
the hood when the nlp object is called on a text and all components are
|
|
||||||
applied to the Doc.
|
|
||||||
|
|
||||||
stream (Iterable[Doc]): A stream of documents.
|
|
||||||
batch_size (int): The number of documents to buffer.
|
|
||||||
YIELDS (Doc): Processed documents in order.
|
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/entitylinker#pipe
|
|
||||||
"""
|
|
||||||
for docs in util.minibatch(stream, size=batch_size):
|
|
||||||
kb_ids = self.predict(docs)
|
|
||||||
self.set_annotations(docs, kb_ids)
|
|
||||||
yield from docs
|
|
||||||
|
|
||||||
def predict(self, docs: Iterable[Doc]) -> List[str]:
|
def predict(self, docs: Iterable[Doc]) -> List[str]:
|
||||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||||
Returns the KB IDs for each entity in each doc, including NIL if there is
|
Returns the KB IDs for each entity in each doc, including NIL if there is
|
||||||
|
|
|
@ -135,12 +135,25 @@ class EntityRuler(Pipe):
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/entityruler#call
|
DOCS: https://nightly.spacy.io/api/entityruler#call
|
||||||
"""
|
"""
|
||||||
|
error_handler = self.get_error_handler()
|
||||||
|
try:
|
||||||
|
matches = self.match(doc)
|
||||||
|
self.set_annotations(doc, matches)
|
||||||
|
return doc
|
||||||
|
except Exception as e:
|
||||||
|
error_handler(self.name, self, [doc], e)
|
||||||
|
|
||||||
|
def match(self, doc: Doc):
|
||||||
matches = list(self.matcher(doc)) + list(self.phrase_matcher(doc))
|
matches = list(self.matcher(doc)) + list(self.phrase_matcher(doc))
|
||||||
matches = set(
|
matches = set(
|
||||||
[(m_id, start, end) for m_id, start, end in matches if start != end]
|
[(m_id, start, end) for m_id, start, end in matches if start != end]
|
||||||
)
|
)
|
||||||
get_sort_key = lambda m: (m[2] - m[1], -m[1])
|
get_sort_key = lambda m: (m[2] - m[1], -m[1])
|
||||||
matches = sorted(matches, key=get_sort_key, reverse=True)
|
matches = sorted(matches, key=get_sort_key, reverse=True)
|
||||||
|
return matches
|
||||||
|
|
||||||
|
def set_annotations(self, doc, matches):
|
||||||
|
"""Modify the document in place"""
|
||||||
entities = list(doc.ents)
|
entities = list(doc.ents)
|
||||||
new_entities = []
|
new_entities = []
|
||||||
seen_tokens = set()
|
seen_tokens = set()
|
||||||
|
@ -163,7 +176,6 @@ class EntityRuler(Pipe):
|
||||||
]
|
]
|
||||||
seen_tokens.update(range(start, end))
|
seen_tokens.update(range(start, end))
|
||||||
doc.ents = entities + new_entities
|
doc.ents = entities + new_entities
|
||||||
return doc
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def labels(self) -> Tuple[str, ...]:
|
def labels(self) -> Tuple[str, ...]:
|
||||||
|
|
|
@ -23,11 +23,7 @@ from .. import util
|
||||||
default_score_weights={"lemma_acc": 1.0},
|
default_score_weights={"lemma_acc": 1.0},
|
||||||
)
|
)
|
||||||
def make_lemmatizer(
|
def make_lemmatizer(
|
||||||
nlp: Language,
|
nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool = False
|
||||||
model: Optional[Model],
|
|
||||||
name: str,
|
|
||||||
mode: str,
|
|
||||||
overwrite: bool = False,
|
|
||||||
):
|
):
|
||||||
return Lemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite)
|
return Lemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite)
|
||||||
|
|
||||||
|
@ -107,10 +103,14 @@ class Lemmatizer(Pipe):
|
||||||
"""
|
"""
|
||||||
if not self._validated:
|
if not self._validated:
|
||||||
self._validate_tables(Errors.E1004)
|
self._validate_tables(Errors.E1004)
|
||||||
|
error_handler = self.get_error_handler()
|
||||||
|
try:
|
||||||
for token in doc:
|
for token in doc:
|
||||||
if self.overwrite or token.lemma == 0:
|
if self.overwrite or token.lemma == 0:
|
||||||
token.lemma_ = self.lemmatize(token)[0]
|
token.lemma_ = self.lemmatize(token)[0]
|
||||||
return doc
|
return doc
|
||||||
|
except Exception as e:
|
||||||
|
error_handler(self.name, self, [doc], e)
|
||||||
|
|
||||||
def initialize(
|
def initialize(
|
||||||
self,
|
self,
|
||||||
|
@ -154,21 +154,6 @@ class Lemmatizer(Pipe):
|
||||||
)
|
)
|
||||||
self._validated = True
|
self._validated = True
|
||||||
|
|
||||||
def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
|
|
||||||
"""Apply the pipe to a stream of documents. This usually happens under
|
|
||||||
the hood when the nlp object is called on a text and all components are
|
|
||||||
applied to the Doc.
|
|
||||||
|
|
||||||
stream (Iterable[Doc]): A stream of documents.
|
|
||||||
batch_size (int): The number of documents to buffer.
|
|
||||||
YIELDS (Doc): Processed documents in order.
|
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/lemmatizer#pipe
|
|
||||||
"""
|
|
||||||
for doc in stream:
|
|
||||||
doc = self(doc)
|
|
||||||
yield doc
|
|
||||||
|
|
||||||
def lookup_lemmatize(self, token: Token) -> List[str]:
|
def lookup_lemmatize(self, token: Token) -> List[str]:
|
||||||
"""Lemmatize using a lookup-based approach.
|
"""Lemmatize using a lookup-based approach.
|
||||||
|
|
||||||
|
|
|
@ -1,13 +1,14 @@
|
||||||
# cython: infer_types=True, profile=True
|
# cython: infer_types=True, profile=True
|
||||||
import warnings
|
|
||||||
from typing import Optional, Tuple, Iterable, Iterator, Callable, Union, Dict
|
from typing import Optional, Tuple, Iterable, Iterator, Callable, Union, Dict
|
||||||
import srsly
|
import srsly
|
||||||
|
import warnings
|
||||||
|
|
||||||
from ..tokens.doc cimport Doc
|
from ..tokens.doc cimport Doc
|
||||||
|
|
||||||
from ..training import Example
|
from ..training import Example
|
||||||
from ..errors import Errors, Warnings
|
from ..errors import Errors, Warnings
|
||||||
from ..language import Language
|
from ..language import Language
|
||||||
|
from ..util import raise_error
|
||||||
|
|
||||||
cdef class Pipe:
|
cdef class Pipe:
|
||||||
"""This class is a base class and not instantiated directly. It provides
|
"""This class is a base class and not instantiated directly. It provides
|
||||||
|
@ -48,9 +49,13 @@ cdef class Pipe:
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/pipe#pipe
|
DOCS: https://nightly.spacy.io/api/pipe#pipe
|
||||||
"""
|
"""
|
||||||
|
error_handler = self.get_error_handler()
|
||||||
for doc in stream:
|
for doc in stream:
|
||||||
|
try:
|
||||||
doc = self(doc)
|
doc = self(doc)
|
||||||
yield doc
|
yield doc
|
||||||
|
except Exception as e:
|
||||||
|
error_handler(self.name, self, [doc], e)
|
||||||
|
|
||||||
def initialize(self, get_examples: Callable[[], Iterable[Example]], *, nlp: Language=None):
|
def initialize(self, get_examples: Callable[[], Iterable[Example]], *, nlp: Language=None):
|
||||||
"""Initialize the pipe. For non-trainable components, this method
|
"""Initialize the pipe. For non-trainable components, this method
|
||||||
|
@ -98,6 +103,30 @@ cdef class Pipe:
|
||||||
if not self.labels or list(self.labels) == [""]:
|
if not self.labels or list(self.labels) == [""]:
|
||||||
raise ValueError(Errors.E143.format(name=self.name))
|
raise ValueError(Errors.E143.format(name=self.name))
|
||||||
|
|
||||||
|
def set_error_handler(self, error_handler: Callable) -> None:
|
||||||
|
"""Set an error handler function.
|
||||||
|
|
||||||
|
error_handler (Callable[[str, Callable[[Doc], Doc], List[Doc], Exception], None]):
|
||||||
|
Function that deals with a failing batch of documents. This callable function should take in
|
||||||
|
the component's name, the component itself, the offending batch of documents, and the exception
|
||||||
|
that was thrown.
|
||||||
|
|
||||||
|
DOCS: https://nightly.spacy.io/api/pipe#set_error_handler
|
||||||
|
"""
|
||||||
|
self.error_handler = error_handler
|
||||||
|
|
||||||
|
def get_error_handler(self) -> Optional[Callable]:
|
||||||
|
"""Retrieve the error handler function.
|
||||||
|
|
||||||
|
RETURNS (Callable): The error handler, or if it's not set a default function that just reraises.
|
||||||
|
|
||||||
|
DOCS: https://nightly.spacy.io/api/pipe#get_error_handler
|
||||||
|
"""
|
||||||
|
if hasattr(self, "error_handler"):
|
||||||
|
return self.error_handler
|
||||||
|
return raise_error
|
||||||
|
|
||||||
|
|
||||||
def deserialize_config(path):
|
def deserialize_config(path):
|
||||||
if path.exists():
|
if path.exists():
|
||||||
return srsly.read_json(path)
|
return srsly.read_json(path)
|
||||||
|
|
|
@ -1,16 +1,14 @@
|
||||||
# cython: infer_types=True, profile=True, binding=True
|
# cython: infer_types=True, profile=True, binding=True
|
||||||
import srsly
|
|
||||||
from typing import Optional, List
|
from typing import Optional, List
|
||||||
|
import srsly
|
||||||
|
|
||||||
from ..tokens.doc cimport Doc
|
from ..tokens.doc cimport Doc
|
||||||
|
|
||||||
from .pipe import Pipe
|
from .pipe import Pipe
|
||||||
from ..language import Language
|
from ..language import Language
|
||||||
from ..scorer import Scorer
|
from ..scorer import Scorer
|
||||||
from ..training import validate_examples
|
from ..training import validate_examples
|
||||||
from .. import util
|
from .. import util
|
||||||
|
|
||||||
|
|
||||||
@Language.factory(
|
@Language.factory(
|
||||||
"sentencizer",
|
"sentencizer",
|
||||||
assigns=["token.is_sent_start", "doc.sents"],
|
assigns=["token.is_sent_start", "doc.sents"],
|
||||||
|
@ -66,6 +64,14 @@ class Sentencizer(Pipe):
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/sentencizer#call
|
DOCS: https://nightly.spacy.io/api/sentencizer#call
|
||||||
"""
|
"""
|
||||||
|
error_handler = self.get_error_handler()
|
||||||
|
try:
|
||||||
|
self._call(doc)
|
||||||
|
return doc
|
||||||
|
except Exception as e:
|
||||||
|
error_handler(self.name, self, [doc], e)
|
||||||
|
|
||||||
|
def _call(self, doc):
|
||||||
start = 0
|
start = 0
|
||||||
seen_period = False
|
seen_period = False
|
||||||
for i, token in enumerate(doc):
|
for i, token in enumerate(doc):
|
||||||
|
@ -79,23 +85,6 @@ class Sentencizer(Pipe):
|
||||||
seen_period = True
|
seen_period = True
|
||||||
if start < len(doc):
|
if start < len(doc):
|
||||||
doc[start].is_sent_start = True
|
doc[start].is_sent_start = True
|
||||||
return doc
|
|
||||||
|
|
||||||
def pipe(self, stream, batch_size=128):
|
|
||||||
"""Apply the pipe to a stream of documents. This usually happens under
|
|
||||||
the hood when the nlp object is called on a text and all components are
|
|
||||||
applied to the Doc.
|
|
||||||
|
|
||||||
stream (Iterable[Doc]): A stream of documents.
|
|
||||||
batch_size (int): The number of documents to buffer.
|
|
||||||
YIELDS (Doc): Processed documents in order.
|
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/sentencizer#pipe
|
|
||||||
"""
|
|
||||||
for docs in util.minibatch(stream, size=batch_size):
|
|
||||||
predictions = self.predict(docs)
|
|
||||||
self.set_annotations(docs, predictions)
|
|
||||||
yield from docs
|
|
||||||
|
|
||||||
def predict(self, docs):
|
def predict(self, docs):
|
||||||
"""Apply the pipe to a batch of docs, without modifying them.
|
"""Apply the pipe to a batch of docs, without modifying them.
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
# cython: infer_types=True, profile=True, binding=True
|
# cython: infer_types=True, profile=True, binding=True
|
||||||
from typing import List
|
|
||||||
import numpy
|
import numpy
|
||||||
import srsly
|
import srsly
|
||||||
from thinc.api import Model, set_dropout_rate, SequenceCategoricalCrossentropy, Config
|
from thinc.api import Model, set_dropout_rate, SequenceCategoricalCrossentropy, Config
|
||||||
|
@ -95,34 +94,6 @@ class Tagger(TrainablePipe):
|
||||||
"""Data about the labels currently added to the component."""
|
"""Data about the labels currently added to the component."""
|
||||||
return tuple(self.cfg["labels"])
|
return tuple(self.cfg["labels"])
|
||||||
|
|
||||||
def __call__(self, doc):
|
|
||||||
"""Apply the pipe to a Doc.
|
|
||||||
|
|
||||||
doc (Doc): The document to process.
|
|
||||||
RETURNS (Doc): The processed Doc.
|
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/tagger#call
|
|
||||||
"""
|
|
||||||
tags = self.predict([doc])
|
|
||||||
self.set_annotations([doc], tags)
|
|
||||||
return doc
|
|
||||||
|
|
||||||
def pipe(self, stream, *, batch_size=128):
|
|
||||||
"""Apply the pipe to a stream of documents. This usually happens under
|
|
||||||
the hood when the nlp object is called on a text and all components are
|
|
||||||
applied to the Doc.
|
|
||||||
|
|
||||||
stream (Iterable[Doc]): A stream of documents.
|
|
||||||
batch_size (int): The number of documents to buffer.
|
|
||||||
YIELDS (Doc): Processed documents in order.
|
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/tagger#pipe
|
|
||||||
"""
|
|
||||||
for docs in util.minibatch(stream, size=batch_size):
|
|
||||||
tag_ids = self.predict(docs)
|
|
||||||
self.set_annotations(docs, tag_ids)
|
|
||||||
yield from docs
|
|
||||||
|
|
||||||
def predict(self, docs):
|
def predict(self, docs):
|
||||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
from itertools import islice
|
from itertools import islice
|
||||||
from typing import Iterable, Tuple, Optional, Dict, List, Callable, Iterator, Any
|
from typing import Iterable, Tuple, Optional, Dict, List, Callable, Any
|
||||||
from thinc.api import get_array_module, Model, Optimizer, set_dropout_rate, Config
|
from thinc.api import get_array_module, Model, Optimizer, set_dropout_rate, Config
|
||||||
from thinc.types import Floats2d
|
from thinc.types import Floats2d
|
||||||
import numpy
|
import numpy
|
||||||
|
@ -9,7 +9,6 @@ from ..language import Language
|
||||||
from ..training import Example, validate_examples, validate_get_examples
|
from ..training import Example, validate_examples, validate_get_examples
|
||||||
from ..errors import Errors
|
from ..errors import Errors
|
||||||
from ..scorer import Scorer
|
from ..scorer import Scorer
|
||||||
from .. import util
|
|
||||||
from ..tokens import Doc
|
from ..tokens import Doc
|
||||||
from ..vocab import Vocab
|
from ..vocab import Vocab
|
||||||
|
|
||||||
|
@ -144,22 +143,6 @@ class TextCategorizer(TrainablePipe):
|
||||||
"""
|
"""
|
||||||
return self.labels
|
return self.labels
|
||||||
|
|
||||||
def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
|
|
||||||
"""Apply the pipe to a stream of documents. This usually happens under
|
|
||||||
the hood when the nlp object is called on a text and all components are
|
|
||||||
applied to the Doc.
|
|
||||||
|
|
||||||
stream (Iterable[Doc]): A stream of documents.
|
|
||||||
batch_size (int): The number of documents to buffer.
|
|
||||||
YIELDS (Doc): Processed documents in order.
|
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/textcategorizer#pipe
|
|
||||||
"""
|
|
||||||
for docs in util.minibatch(stream, size=batch_size):
|
|
||||||
scores = self.predict(docs)
|
|
||||||
self.set_annotations(docs, scores)
|
|
||||||
yield from docs
|
|
||||||
|
|
||||||
def predict(self, docs: Iterable[Doc]):
|
def predict(self, docs: Iterable[Doc]):
|
||||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
from typing import Iterator, Sequence, Iterable, Optional, Dict, Callable, List
|
from typing import Sequence, Iterable, Optional, Dict, Callable, List
|
||||||
from thinc.api import Model, set_dropout_rate, Optimizer, Config
|
from thinc.api import Model, set_dropout_rate, Optimizer, Config
|
||||||
from itertools import islice
|
from itertools import islice
|
||||||
|
|
||||||
|
@ -8,8 +8,6 @@ from ..tokens import Doc
|
||||||
from ..vocab import Vocab
|
from ..vocab import Vocab
|
||||||
from ..language import Language
|
from ..language import Language
|
||||||
from ..errors import Errors
|
from ..errors import Errors
|
||||||
from ..util import minibatch
|
|
||||||
|
|
||||||
|
|
||||||
default_model_config = """
|
default_model_config = """
|
||||||
[model]
|
[model]
|
||||||
|
@ -99,36 +97,6 @@ class Tok2Vec(TrainablePipe):
|
||||||
if isinstance(node, Tok2VecListener) and node.upstream_name in names:
|
if isinstance(node, Tok2VecListener) and node.upstream_name in names:
|
||||||
self.add_listener(node, component.name)
|
self.add_listener(node, component.name)
|
||||||
|
|
||||||
def __call__(self, doc: Doc) -> Doc:
|
|
||||||
"""Add context-sensitive embeddings to the Doc.tensor attribute, allowing
|
|
||||||
them to be used as features by downstream components.
|
|
||||||
|
|
||||||
docs (Doc): The Doc to process.
|
|
||||||
RETURNS (Doc): The processed Doc.
|
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/tok2vec#call
|
|
||||||
"""
|
|
||||||
tokvecses = self.predict([doc])
|
|
||||||
self.set_annotations([doc], tokvecses)
|
|
||||||
return doc
|
|
||||||
|
|
||||||
def pipe(self, stream: Iterator[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
|
|
||||||
"""Apply the pipe to a stream of documents. This usually happens under
|
|
||||||
the hood when the nlp object is called on a text and all components are
|
|
||||||
applied to the Doc.
|
|
||||||
|
|
||||||
stream (Iterable[Doc]): A stream of documents.
|
|
||||||
batch_size (int): The number of documents to buffer.
|
|
||||||
YIELDS (Doc): Processed documents in order.
|
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/tok2vec#pipe
|
|
||||||
"""
|
|
||||||
for docs in minibatch(stream, batch_size):
|
|
||||||
docs = list(docs)
|
|
||||||
tokvecses = self.predict(docs)
|
|
||||||
self.set_annotations(docs, tokvecses)
|
|
||||||
yield from docs
|
|
||||||
|
|
||||||
def predict(self, docs: Iterable[Doc]):
|
def predict(self, docs: Iterable[Doc]):
|
||||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||||
Returns a single tensor for a batch of documents.
|
Returns a single tensor for a batch of documents.
|
||||||
|
|
|
@ -28,7 +28,7 @@ cdef class TrainablePipe(Pipe):
|
||||||
vocab (Vocab): The shared vocabulary.
|
vocab (Vocab): The shared vocabulary.
|
||||||
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
||||||
name (str): The component instance name.
|
name (str): The component instance name.
|
||||||
**cfg: Additonal settings and config parameters.
|
**cfg: Additional settings and config parameters.
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/pipe#init
|
DOCS: https://nightly.spacy.io/api/pipe#init
|
||||||
"""
|
"""
|
||||||
|
@ -47,9 +47,13 @@ cdef class TrainablePipe(Pipe):
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/pipe#call
|
DOCS: https://nightly.spacy.io/api/pipe#call
|
||||||
"""
|
"""
|
||||||
|
error_handler = self.get_error_handler()
|
||||||
|
try:
|
||||||
scores = self.predict([doc])
|
scores = self.predict([doc])
|
||||||
self.set_annotations([doc], scores)
|
self.set_annotations([doc], scores)
|
||||||
return doc
|
return doc
|
||||||
|
except Exception as e:
|
||||||
|
error_handler(self.name, self, [doc], e)
|
||||||
|
|
||||||
def pipe(self, stream: Iterable[Doc], *, batch_size: int=128) -> Iterator[Doc]:
|
def pipe(self, stream: Iterable[Doc], *, batch_size: int=128) -> Iterator[Doc]:
|
||||||
"""Apply the pipe to a stream of documents. This usually happens under
|
"""Apply the pipe to a stream of documents. This usually happens under
|
||||||
|
@ -58,14 +62,21 @@ cdef class TrainablePipe(Pipe):
|
||||||
|
|
||||||
stream (Iterable[Doc]): A stream of documents.
|
stream (Iterable[Doc]): A stream of documents.
|
||||||
batch_size (int): The number of documents to buffer.
|
batch_size (int): The number of documents to buffer.
|
||||||
|
error_handler (Callable[[str, List[Doc], Exception], Any]): Function that
|
||||||
|
deals with a failing batch of documents. The default function just reraises
|
||||||
|
the exception.
|
||||||
YIELDS (Doc): Processed documents in order.
|
YIELDS (Doc): Processed documents in order.
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/pipe#pipe
|
DOCS: https://nightly.spacy.io/api/pipe#pipe
|
||||||
"""
|
"""
|
||||||
|
error_handler = self.get_error_handler()
|
||||||
for docs in util.minibatch(stream, size=batch_size):
|
for docs in util.minibatch(stream, size=batch_size):
|
||||||
|
try:
|
||||||
scores = self.predict(docs)
|
scores = self.predict(docs)
|
||||||
self.set_annotations(docs, scores)
|
self.set_annotations(docs, scores)
|
||||||
yield from docs
|
yield from docs
|
||||||
|
except Exception as e:
|
||||||
|
error_handler(self.name, self, docs, e)
|
||||||
|
|
||||||
def predict(self, docs: Iterable[Doc]):
|
def predict(self, docs: Iterable[Doc]):
|
||||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||||
|
|
|
@ -7,7 +7,6 @@ from libcpp.vector cimport vector
|
||||||
from libc.string cimport memset, memcpy
|
from libc.string cimport memset, memcpy
|
||||||
from libc.stdlib cimport calloc, free
|
from libc.stdlib cimport calloc, free
|
||||||
import random
|
import random
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
import srsly
|
import srsly
|
||||||
from thinc.api import set_dropout_rate, CupyOps
|
from thinc.api import set_dropout_rate, CupyOps
|
||||||
|
@ -30,7 +29,6 @@ from ..training import validate_examples, validate_get_examples
|
||||||
from ..errors import Errors, Warnings
|
from ..errors import Errors, Warnings
|
||||||
from .. import util
|
from .. import util
|
||||||
|
|
||||||
|
|
||||||
cdef class Parser(TrainablePipe):
|
cdef class Parser(TrainablePipe):
|
||||||
"""
|
"""
|
||||||
Base class of the DependencyParser and EntityRecognizer.
|
Base class of the DependencyParser and EntityRecognizer.
|
||||||
|
@ -175,32 +173,31 @@ cdef class Parser(TrainablePipe):
|
||||||
with self.model.use_params(params):
|
with self.model.use_params(params):
|
||||||
yield
|
yield
|
||||||
|
|
||||||
def __call__(self, Doc doc):
|
|
||||||
"""Apply the parser or entity recognizer, setting the annotations onto
|
|
||||||
the `Doc` object.
|
|
||||||
|
|
||||||
doc (Doc): The document to be processed.
|
|
||||||
"""
|
|
||||||
states = self.predict([doc])
|
|
||||||
self.set_annotations([doc], states)
|
|
||||||
return doc
|
|
||||||
|
|
||||||
def pipe(self, docs, *, int batch_size=256):
|
def pipe(self, docs, *, int batch_size=256):
|
||||||
"""Process a stream of documents.
|
"""Process a stream of documents.
|
||||||
|
|
||||||
stream: The sequence of documents to process.
|
stream: The sequence of documents to process.
|
||||||
batch_size (int): Number of documents to accumulate into a working set.
|
batch_size (int): Number of documents to accumulate into a working set.
|
||||||
|
error_handler (Callable[[str, List[Doc], Exception], Any]): Function that
|
||||||
|
deals with a failing batch of documents. The default function just reraises
|
||||||
|
the exception.
|
||||||
|
|
||||||
YIELDS (Doc): Documents, in order.
|
YIELDS (Doc): Documents, in order.
|
||||||
"""
|
"""
|
||||||
cdef Doc doc
|
cdef Doc doc
|
||||||
|
error_handler = self.get_error_handler()
|
||||||
for batch in util.minibatch(docs, size=batch_size):
|
for batch in util.minibatch(docs, size=batch_size):
|
||||||
batch_in_order = list(batch)
|
batch_in_order = list(batch)
|
||||||
|
try:
|
||||||
by_length = sorted(batch, key=lambda doc: len(doc))
|
by_length = sorted(batch, key=lambda doc: len(doc))
|
||||||
for subbatch in util.minibatch(by_length, size=max(batch_size//4, 2)):
|
for subbatch in util.minibatch(by_length, size=max(batch_size//4, 2)):
|
||||||
subbatch = list(subbatch)
|
subbatch = list(subbatch)
|
||||||
parse_states = self.predict(subbatch)
|
parse_states = self.predict(subbatch)
|
||||||
self.set_annotations(subbatch, parse_states)
|
self.set_annotations(subbatch, parse_states)
|
||||||
yield from batch_in_order
|
yield from batch_in_order
|
||||||
|
except Exception as e:
|
||||||
|
error_handler(self.name, self, batch_in_order, e)
|
||||||
|
|
||||||
|
|
||||||
def predict(self, docs):
|
def predict(self, docs):
|
||||||
if isinstance(docs, Doc):
|
if isinstance(docs, Doc):
|
||||||
|
|
|
@ -1,4 +1,6 @@
|
||||||
import itertools
|
import itertools
|
||||||
|
import logging
|
||||||
|
from unittest import mock
|
||||||
import pytest
|
import pytest
|
||||||
from spacy.language import Language
|
from spacy.language import Language
|
||||||
from spacy.tokens import Doc, Span
|
from spacy.tokens import Doc, Span
|
||||||
|
@ -6,7 +8,7 @@ from spacy.vocab import Vocab
|
||||||
from spacy.training import Example
|
from spacy.training import Example
|
||||||
from spacy.lang.en import English
|
from spacy.lang.en import English
|
||||||
from spacy.lang.de import German
|
from spacy.lang.de import German
|
||||||
from spacy.util import registry
|
from spacy.util import registry, ignore_error, raise_error
|
||||||
import spacy
|
import spacy
|
||||||
|
|
||||||
from .util import add_vecs_to_vocab, assert_docs_equal
|
from .util import add_vecs_to_vocab, assert_docs_equal
|
||||||
|
@ -161,6 +163,81 @@ def test_language_pipe_stream(nlp2, n_process, texts):
|
||||||
assert_docs_equal(doc, expected_doc)
|
assert_docs_equal(doc, expected_doc)
|
||||||
|
|
||||||
|
|
||||||
|
def test_language_pipe_error_handler():
|
||||||
|
"""Test that the error handling of nlp.pipe works well"""
|
||||||
|
nlp = English()
|
||||||
|
nlp.add_pipe("merge_subtokens")
|
||||||
|
nlp.initialize()
|
||||||
|
texts = ["Curious to see what will happen to this text.", "And this one."]
|
||||||
|
# the pipeline fails because there's no parser
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
nlp(texts[0])
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
list(nlp.pipe(texts))
|
||||||
|
nlp.set_error_handler(raise_error)
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
list(nlp.pipe(texts))
|
||||||
|
# set explicitely to ignoring
|
||||||
|
nlp.set_error_handler(ignore_error)
|
||||||
|
docs = list(nlp.pipe(texts))
|
||||||
|
assert len(docs) == 0
|
||||||
|
nlp(texts[0])
|
||||||
|
|
||||||
|
|
||||||
|
def test_language_pipe_error_handler_custom(en_vocab):
|
||||||
|
"""Test the error handling of a custom component that has no pipe method"""
|
||||||
|
@Language.component("my_evil_component")
|
||||||
|
def evil_component(doc):
|
||||||
|
if "2" in doc.text:
|
||||||
|
raise ValueError("no dice")
|
||||||
|
return doc
|
||||||
|
|
||||||
|
def warn_error(proc_name, proc, docs, e):
|
||||||
|
from spacy.util import logger
|
||||||
|
logger.warning(f"Trouble with component {proc_name}.")
|
||||||
|
|
||||||
|
nlp = English()
|
||||||
|
nlp.add_pipe("my_evil_component")
|
||||||
|
nlp.initialize()
|
||||||
|
texts = ["TEXT 111", "TEXT 222", "TEXT 333", "TEXT 342", "TEXT 666"]
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
# the evil custom component throws an error
|
||||||
|
list(nlp.pipe(texts))
|
||||||
|
|
||||||
|
nlp.set_error_handler(warn_error)
|
||||||
|
logger = logging.getLogger("spacy")
|
||||||
|
with mock.patch.object(logger, "warning") as mock_warning:
|
||||||
|
# the errors by the evil custom component raise a warning for each bad batch
|
||||||
|
docs = list(nlp.pipe(texts))
|
||||||
|
mock_warning.assert_called()
|
||||||
|
assert mock_warning.call_count == 2
|
||||||
|
assert len(docs) + mock_warning.call_count == len(texts)
|
||||||
|
assert [doc.text for doc in docs] == ["TEXT 111", "TEXT 333", "TEXT 666"]
|
||||||
|
|
||||||
|
|
||||||
|
def test_language_pipe_error_handler_pipe(en_vocab):
|
||||||
|
"""Test the error handling of a component's pipe method"""
|
||||||
|
@Language.component("my_sentences")
|
||||||
|
def perhaps_set_sentences(doc):
|
||||||
|
if not doc.text.startswith("4"):
|
||||||
|
doc[-1].is_sent_start = True
|
||||||
|
return doc
|
||||||
|
|
||||||
|
texts = [f"{str(i)} is enough. Done" for i in range(100)]
|
||||||
|
nlp = English()
|
||||||
|
nlp.add_pipe("my_sentences")
|
||||||
|
entity_linker = nlp.add_pipe("entity_linker", config={"entity_vector_length": 3})
|
||||||
|
entity_linker.kb.add_entity(entity="Q1", freq=12, entity_vector=[1, 2, 3])
|
||||||
|
nlp.initialize()
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
# the entity linker requires sentence boundaries, will throw an error otherwise
|
||||||
|
docs = list(nlp.pipe(texts, batch_size=10))
|
||||||
|
nlp.set_error_handler(ignore_error)
|
||||||
|
docs = list(nlp.pipe(texts, batch_size=10))
|
||||||
|
# we lose/ignore the failing 0-9 and 40-49 batches
|
||||||
|
assert len(docs) == 80
|
||||||
|
|
||||||
|
|
||||||
def test_language_from_config_before_after_init():
|
def test_language_from_config_before_after_init():
|
||||||
name = "test_language_from_config_before_after_init"
|
name = "test_language_from_config_before_after_init"
|
||||||
ran_before = False
|
ran_before = False
|
||||||
|
|
|
@ -1420,15 +1420,28 @@ def check_bool_env_var(env_var: str) -> bool:
|
||||||
return bool(value)
|
return bool(value)
|
||||||
|
|
||||||
|
|
||||||
def _pipe(docs, proc, kwargs):
|
def _pipe(docs, proc, name, default_error_handler, kwargs):
|
||||||
if hasattr(proc, "pipe"):
|
if hasattr(proc, "pipe"):
|
||||||
yield from proc.pipe(docs, **kwargs)
|
yield from proc.pipe(docs, **kwargs)
|
||||||
else:
|
else:
|
||||||
# We added some args for pipe that __call__ doesn't expect.
|
# We added some args for pipe that __call__ doesn't expect.
|
||||||
kwargs = dict(kwargs)
|
kwargs = dict(kwargs)
|
||||||
|
error_handler = default_error_handler
|
||||||
|
if hasattr(proc, "get_error_handler"):
|
||||||
|
error_handler = proc.get_error_handler()
|
||||||
for arg in ["batch_size"]:
|
for arg in ["batch_size"]:
|
||||||
if arg in kwargs:
|
if arg in kwargs:
|
||||||
kwargs.pop(arg)
|
kwargs.pop(arg)
|
||||||
for doc in docs:
|
for doc in docs:
|
||||||
|
try:
|
||||||
doc = proc(doc, **kwargs)
|
doc = proc(doc, **kwargs)
|
||||||
yield doc
|
yield doc
|
||||||
|
except Exception as e:
|
||||||
|
error_handler(name, proc, [doc], e)
|
||||||
|
|
||||||
|
|
||||||
|
def raise_error(proc_name, proc, docs, e):
|
||||||
|
raise e
|
||||||
|
|
||||||
|
def ignore_error(proc_name, proc, docs, e):
|
||||||
|
pass
|
||||||
|
|
|
@ -203,6 +203,28 @@ more efficient than processing texts one-by-one.
|
||||||
| `n_process` <Tag variant="new">2.2.2</Tag> | Number of processors to use. Defaults to `1`. ~~int~~ |
|
| `n_process` <Tag variant="new">2.2.2</Tag> | Number of processors to use. Defaults to `1`. ~~int~~ |
|
||||||
| **YIELDS** | Documents in the order of the original text. ~~Doc~~ |
|
| **YIELDS** | Documents in the order of the original text. ~~Doc~~ |
|
||||||
|
|
||||||
|
## Language.set_error_handler {#set_error_handler tag="method"}
|
||||||
|
|
||||||
|
Define a callback that will be invoked when an error is thrown during processing
|
||||||
|
of one or more documents. Specifically, this function will call
|
||||||
|
[`set_error_handler`](/api/pipe#set_error_handler) on all the pipeline
|
||||||
|
components that define that function. The error handler will be invoked with the
|
||||||
|
original component's name, the component itself, the list of documents that was
|
||||||
|
being processed, and the original error.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> def warn_error(proc_name, proc, docs, e):
|
||||||
|
> print(f"An error occurred when applying component {proc_name}.")
|
||||||
|
>
|
||||||
|
> nlp.set_error_handler(warn_error)
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| --------------- | -------------------------------------------------------------------------------------------------------------- |
|
||||||
|
| `error_handler` | A function that performs custom error handling. ~~Callable[[str, Callable[[Doc], Doc], List[Doc], Exception]~~ |
|
||||||
|
|
||||||
## Language.initialize {#initialize tag="method" new="3"}
|
## Language.initialize {#initialize tag="method" new="3"}
|
||||||
|
|
||||||
Initialize the pipeline for training and return an
|
Initialize the pipeline for training and return an
|
||||||
|
|
|
@ -100,6 +100,47 @@ applied to the `Doc` in order. Both [`__call__`](/api/pipe#call) and
|
||||||
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
|
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
|
||||||
| **YIELDS** | The processed documents in order. ~~Doc~~ |
|
| **YIELDS** | The processed documents in order. ~~Doc~~ |
|
||||||
|
|
||||||
|
## TrainablePipe.set_error_handler {#set_error_handler tag="method"}
|
||||||
|
|
||||||
|
Define a callback that will be invoked when an error is thrown during processing
|
||||||
|
of one or more documents with either [`__call__`](/api/pipe#call) or
|
||||||
|
[`pipe`](/api/pipe#pipe). The error handler will be invoked with the original
|
||||||
|
component's name, the component itself, the list of documents that was being
|
||||||
|
processed, and the original error.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> def warn_error(proc_name, proc, docs, e):
|
||||||
|
> print(f"An error occurred when applying component {proc_name}.")
|
||||||
|
>
|
||||||
|
> pipe = nlp.add_pipe("ner")
|
||||||
|
> pipe.set_error_handler(warn_error)
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| --------------- | -------------------------------------------------------------------------------------------------------------- |
|
||||||
|
| `error_handler` | A function that performs custom error handling. ~~Callable[[str, Callable[[Doc], Doc], List[Doc], Exception]~~ |
|
||||||
|
|
||||||
|
## TrainablePipe.get_error_handler {#get_error_handler tag="method"}
|
||||||
|
|
||||||
|
Retrieve the callback that performs error handling for this component's
|
||||||
|
[`__call__`](/api/pipe#call) and [`pipe`](/api/pipe#pipe) methods. If no custom
|
||||||
|
function was previously defined with
|
||||||
|
[`set_error_handler`](/api/pipe#set_error_handler), a default function is
|
||||||
|
returned that simply reraises the exception.
|
||||||
|
|
||||||
|
> #### Example
|
||||||
|
>
|
||||||
|
> ```python
|
||||||
|
> pipe = nlp.add_pipe("ner")
|
||||||
|
> error_handler = pipe.get_error_handler()
|
||||||
|
> ```
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| ----------- | ---------------------------------------------------------------------------------------------------------------- |
|
||||||
|
| **RETURNS** | The function that performs custom error handling. ~~Callable[[str, Callable[[Doc], Doc], List[Doc], Exception]~~ |
|
||||||
|
|
||||||
## TrainablePipe.initialize {#initialize tag="method" new="3"}
|
## TrainablePipe.initialize {#initialize tag="method" new="3"}
|
||||||
|
|
||||||
Initialize the component for training. `get_examples` should be a function that
|
Initialize the component for training. `get_examples` should be a function that
|
||||||
|
@ -191,7 +232,7 @@ predictions and gold-standard annotations, and update the component's model.
|
||||||
> ```
|
> ```
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
|
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
|
||||||
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
||||||
| _keyword-only_ | |
|
| _keyword-only_ | |
|
||||||
| `drop` | The dropout rate. ~~float~~ |
|
| `drop` | The dropout rate. ~~float~~ |
|
||||||
|
|
Loading…
Reference in New Issue
Block a user