mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-11 17:56:30 +03:00
Error handling in nlp.pipe (#6817)
* add error handler for pipe methods * add unit tests * remove pipe method that are the same as their base class * have Language keep track of a default error handler * cleanup * formatting * small refactor * add documentation
This commit is contained in:
parent
cc18f3f23c
commit
837a4f53c2
|
@ -8,7 +8,7 @@ from contextlib import contextmanager
|
|||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
import warnings
|
||||
from thinc.api import Model, get_current_ops, Config, Optimizer
|
||||
from thinc.api import get_current_ops, Config, Optimizer
|
||||
import srsly
|
||||
import multiprocessing as mp
|
||||
from itertools import chain, cycle
|
||||
|
@ -20,7 +20,7 @@ from .pipe_analysis import validate_attrs, analyze_pipes, print_pipe_analysis
|
|||
from .training import Example, validate_examples
|
||||
from .training.initialize import init_vocab, init_tok2vec
|
||||
from .scorer import Scorer
|
||||
from .util import registry, SimpleFrozenList, _pipe
|
||||
from .util import registry, SimpleFrozenList, _pipe, raise_error
|
||||
from .util import SimpleFrozenDict, combine_score_weights, CONFIG_SECTION_ORDER
|
||||
from .lang.tokenizer_exceptions import URL_MATCH, BASE_EXCEPTIONS
|
||||
from .lang.punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
|
||||
|
@ -176,6 +176,7 @@ class Language:
|
|||
create_tokenizer = registry.resolve(tokenizer_cfg)["tokenizer"]
|
||||
self.tokenizer = create_tokenizer(self)
|
||||
self.batch_size = batch_size
|
||||
self.default_error_handler = raise_error
|
||||
|
||||
def __init_subclass__(cls, **kwargs):
|
||||
super().__init_subclass__(**kwargs)
|
||||
|
@ -981,11 +982,16 @@ class Language:
|
|||
continue
|
||||
if not hasattr(proc, "__call__"):
|
||||
raise ValueError(Errors.E003.format(component=type(proc), name=name))
|
||||
error_handler = self.default_error_handler
|
||||
if hasattr(proc, "get_error_handler"):
|
||||
error_handler = proc.get_error_handler()
|
||||
try:
|
||||
doc = proc(doc, **component_cfg.get(name, {}))
|
||||
except KeyError as e:
|
||||
# This typically happens if a component is not initialized
|
||||
raise ValueError(Errors.E109.format(name=name)) from e
|
||||
except Exception as e:
|
||||
error_handler(name, proc, [doc], e)
|
||||
if doc is None:
|
||||
raise ValueError(Errors.E005.format(name=name))
|
||||
return doc
|
||||
|
@ -1274,6 +1280,26 @@ class Language:
|
|||
self._optimizer = self.create_optimizer()
|
||||
return self._optimizer
|
||||
|
||||
def set_error_handler(
|
||||
self,
|
||||
error_handler: Callable[
|
||||
[str, Callable[[Doc], Doc], List[Doc], Exception], None
|
||||
],
|
||||
):
|
||||
"""Set an error handler object for all the components in the pipeline that implement
|
||||
a set_error_handler function.
|
||||
|
||||
error_handler (Callable[[str, Callable[[Doc], Doc], List[Doc], Exception], None]):
|
||||
Function that deals with a failing batch of documents. This callable function should take in
|
||||
the component's name, the component itself, the offending batch of documents, and the exception
|
||||
that was thrown.
|
||||
DOCS: https://nightly.spacy.io/api/language#set_error_handler
|
||||
"""
|
||||
self.default_error_handler = error_handler
|
||||
for name, pipe in self.pipeline:
|
||||
if hasattr(pipe, "set_error_handler"):
|
||||
pipe.set_error_handler(error_handler)
|
||||
|
||||
def evaluate(
|
||||
self,
|
||||
examples: Iterable[Example],
|
||||
|
@ -1293,6 +1319,7 @@ class Language:
|
|||
arguments for specific components.
|
||||
scorer_cfg (dict): An optional dictionary with extra keyword arguments
|
||||
for the scorer.
|
||||
|
||||
RETURNS (Scorer): The scorer containing the evaluation results.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/language#evaluate
|
||||
|
@ -1317,7 +1344,14 @@ class Language:
|
|||
kwargs = component_cfg.get(name, {})
|
||||
kwargs.setdefault("batch_size", batch_size)
|
||||
for doc, eg in zip(
|
||||
_pipe((eg.predicted for eg in examples), pipe, kwargs), examples
|
||||
_pipe(
|
||||
(eg.predicted for eg in examples),
|
||||
proc=pipe,
|
||||
name=name,
|
||||
default_error_handler=self.default_error_handler,
|
||||
kwargs=kwargs,
|
||||
),
|
||||
examples,
|
||||
):
|
||||
eg.predicted = doc
|
||||
end_time = timer()
|
||||
|
@ -1422,7 +1456,13 @@ class Language:
|
|||
kwargs = component_cfg.get(name, {})
|
||||
# Allow component_cfg to overwrite the top-level kwargs.
|
||||
kwargs.setdefault("batch_size", batch_size)
|
||||
f = functools.partial(_pipe, proc=proc, kwargs=kwargs)
|
||||
f = functools.partial(
|
||||
_pipe,
|
||||
proc=proc,
|
||||
name=name,
|
||||
kwargs=kwargs,
|
||||
default_error_handler=self.default_error_handler,
|
||||
)
|
||||
pipes.append(f)
|
||||
|
||||
if n_process != 1:
|
||||
|
|
|
@ -96,12 +96,25 @@ class AttributeRuler(Pipe):
|
|||
|
||||
DOCS: https://nightly.spacy.io/api/attributeruler#call
|
||||
"""
|
||||
error_handler = self.get_error_handler()
|
||||
try:
|
||||
matches = self.match(doc)
|
||||
self.set_annotations(doc, matches)
|
||||
return doc
|
||||
except Exception as e:
|
||||
error_handler(self.name, self, [doc], e)
|
||||
|
||||
def match(self, doc: Doc):
|
||||
matches = self.matcher(doc, allow_missing=True)
|
||||
# Sort by the attribute ID, so that later rules have precendence
|
||||
matches = [
|
||||
(int(self.vocab.strings[m_id]), m_id, s, e) for m_id, s, e in matches
|
||||
]
|
||||
matches.sort()
|
||||
return matches
|
||||
|
||||
def set_annotations(self, doc, matches):
|
||||
"""Modify the document in place"""
|
||||
for attr_id, match_id, start, end in matches:
|
||||
span = Span(doc, start, end, label=match_id)
|
||||
attrs = self.attrs[attr_id]
|
||||
|
@ -121,7 +134,7 @@ class AttributeRuler(Pipe):
|
|||
)
|
||||
) from None
|
||||
set_token_attrs(span[index], attrs)
|
||||
return doc
|
||||
|
||||
|
||||
def load_from_tag_map(
|
||||
self, tag_map: Dict[str, Dict[Union[int, str], Union[int, str]]]
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
from itertools import islice
|
||||
from typing import Optional, Iterable, Callable, Dict, Iterator, Union, List
|
||||
from typing import Optional, Iterable, Callable, Dict, Union, List
|
||||
from pathlib import Path
|
||||
from itertools import islice
|
||||
import srsly
|
||||
import random
|
||||
from thinc.api import CosineDistance, Model, Optimizer, Config
|
||||
|
@ -276,34 +276,6 @@ class EntityLinker(TrainablePipe):
|
|||
loss = loss / len(entity_encodings)
|
||||
return loss, gradients
|
||||
|
||||
def __call__(self, doc: Doc) -> Doc:
|
||||
"""Apply the pipe to a Doc.
|
||||
|
||||
doc (Doc): The document to process.
|
||||
RETURNS (Doc): The processed Doc.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/entitylinker#call
|
||||
"""
|
||||
kb_ids = self.predict([doc])
|
||||
self.set_annotations([doc], kb_ids)
|
||||
return doc
|
||||
|
||||
def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
|
||||
"""Apply the pipe to a stream of documents. This usually happens under
|
||||
the hood when the nlp object is called on a text and all components are
|
||||
applied to the Doc.
|
||||
|
||||
stream (Iterable[Doc]): A stream of documents.
|
||||
batch_size (int): The number of documents to buffer.
|
||||
YIELDS (Doc): Processed documents in order.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/entitylinker#pipe
|
||||
"""
|
||||
for docs in util.minibatch(stream, size=batch_size):
|
||||
kb_ids = self.predict(docs)
|
||||
self.set_annotations(docs, kb_ids)
|
||||
yield from docs
|
||||
|
||||
def predict(self, docs: Iterable[Doc]) -> List[str]:
|
||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||
Returns the KB IDs for each entity in each doc, including NIL if there is
|
||||
|
|
|
@ -135,12 +135,25 @@ class EntityRuler(Pipe):
|
|||
|
||||
DOCS: https://nightly.spacy.io/api/entityruler#call
|
||||
"""
|
||||
error_handler = self.get_error_handler()
|
||||
try:
|
||||
matches = self.match(doc)
|
||||
self.set_annotations(doc, matches)
|
||||
return doc
|
||||
except Exception as e:
|
||||
error_handler(self.name, self, [doc], e)
|
||||
|
||||
def match(self, doc: Doc):
|
||||
matches = list(self.matcher(doc)) + list(self.phrase_matcher(doc))
|
||||
matches = set(
|
||||
[(m_id, start, end) for m_id, start, end in matches if start != end]
|
||||
)
|
||||
get_sort_key = lambda m: (m[2] - m[1], -m[1])
|
||||
matches = sorted(matches, key=get_sort_key, reverse=True)
|
||||
return matches
|
||||
|
||||
def set_annotations(self, doc, matches):
|
||||
"""Modify the document in place"""
|
||||
entities = list(doc.ents)
|
||||
new_entities = []
|
||||
seen_tokens = set()
|
||||
|
@ -163,7 +176,6 @@ class EntityRuler(Pipe):
|
|||
]
|
||||
seen_tokens.update(range(start, end))
|
||||
doc.ents = entities + new_entities
|
||||
return doc
|
||||
|
||||
@property
|
||||
def labels(self) -> Tuple[str, ...]:
|
||||
|
|
|
@ -23,11 +23,7 @@ from .. import util
|
|||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(
|
||||
nlp: Language,
|
||||
model: Optional[Model],
|
||||
name: str,
|
||||
mode: str,
|
||||
overwrite: bool = False,
|
||||
nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool = False
|
||||
):
|
||||
return Lemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite)
|
||||
|
||||
|
@ -107,10 +103,14 @@ class Lemmatizer(Pipe):
|
|||
"""
|
||||
if not self._validated:
|
||||
self._validate_tables(Errors.E1004)
|
||||
error_handler = self.get_error_handler()
|
||||
try:
|
||||
for token in doc:
|
||||
if self.overwrite or token.lemma == 0:
|
||||
token.lemma_ = self.lemmatize(token)[0]
|
||||
return doc
|
||||
except Exception as e:
|
||||
error_handler(self.name, self, [doc], e)
|
||||
|
||||
def initialize(
|
||||
self,
|
||||
|
@ -154,21 +154,6 @@ class Lemmatizer(Pipe):
|
|||
)
|
||||
self._validated = True
|
||||
|
||||
def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
|
||||
"""Apply the pipe to a stream of documents. This usually happens under
|
||||
the hood when the nlp object is called on a text and all components are
|
||||
applied to the Doc.
|
||||
|
||||
stream (Iterable[Doc]): A stream of documents.
|
||||
batch_size (int): The number of documents to buffer.
|
||||
YIELDS (Doc): Processed documents in order.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/lemmatizer#pipe
|
||||
"""
|
||||
for doc in stream:
|
||||
doc = self(doc)
|
||||
yield doc
|
||||
|
||||
def lookup_lemmatize(self, token: Token) -> List[str]:
|
||||
"""Lemmatize using a lookup-based approach.
|
||||
|
||||
|
|
|
@ -1,13 +1,14 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
import warnings
|
||||
from typing import Optional, Tuple, Iterable, Iterator, Callable, Union, Dict
|
||||
import srsly
|
||||
import warnings
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
|
||||
from ..training import Example
|
||||
from ..errors import Errors, Warnings
|
||||
from ..language import Language
|
||||
from ..util import raise_error
|
||||
|
||||
cdef class Pipe:
|
||||
"""This class is a base class and not instantiated directly. It provides
|
||||
|
@ -48,9 +49,13 @@ cdef class Pipe:
|
|||
|
||||
DOCS: https://nightly.spacy.io/api/pipe#pipe
|
||||
"""
|
||||
error_handler = self.get_error_handler()
|
||||
for doc in stream:
|
||||
try:
|
||||
doc = self(doc)
|
||||
yield doc
|
||||
except Exception as e:
|
||||
error_handler(self.name, self, [doc], e)
|
||||
|
||||
def initialize(self, get_examples: Callable[[], Iterable[Example]], *, nlp: Language=None):
|
||||
"""Initialize the pipe. For non-trainable components, this method
|
||||
|
@ -98,6 +103,30 @@ cdef class Pipe:
|
|||
if not self.labels or list(self.labels) == [""]:
|
||||
raise ValueError(Errors.E143.format(name=self.name))
|
||||
|
||||
def set_error_handler(self, error_handler: Callable) -> None:
|
||||
"""Set an error handler function.
|
||||
|
||||
error_handler (Callable[[str, Callable[[Doc], Doc], List[Doc], Exception], None]):
|
||||
Function that deals with a failing batch of documents. This callable function should take in
|
||||
the component's name, the component itself, the offending batch of documents, and the exception
|
||||
that was thrown.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/pipe#set_error_handler
|
||||
"""
|
||||
self.error_handler = error_handler
|
||||
|
||||
def get_error_handler(self) -> Optional[Callable]:
|
||||
"""Retrieve the error handler function.
|
||||
|
||||
RETURNS (Callable): The error handler, or if it's not set a default function that just reraises.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/pipe#get_error_handler
|
||||
"""
|
||||
if hasattr(self, "error_handler"):
|
||||
return self.error_handler
|
||||
return raise_error
|
||||
|
||||
|
||||
def deserialize_config(path):
|
||||
if path.exists():
|
||||
return srsly.read_json(path)
|
||||
|
|
|
@ -1,16 +1,14 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
import srsly
|
||||
from typing import Optional, List
|
||||
import srsly
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
|
||||
from .pipe import Pipe
|
||||
from ..language import Language
|
||||
from ..scorer import Scorer
|
||||
from ..training import validate_examples
|
||||
from .. import util
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"sentencizer",
|
||||
assigns=["token.is_sent_start", "doc.sents"],
|
||||
|
@ -66,6 +64,14 @@ class Sentencizer(Pipe):
|
|||
|
||||
DOCS: https://nightly.spacy.io/api/sentencizer#call
|
||||
"""
|
||||
error_handler = self.get_error_handler()
|
||||
try:
|
||||
self._call(doc)
|
||||
return doc
|
||||
except Exception as e:
|
||||
error_handler(self.name, self, [doc], e)
|
||||
|
||||
def _call(self, doc):
|
||||
start = 0
|
||||
seen_period = False
|
||||
for i, token in enumerate(doc):
|
||||
|
@ -79,23 +85,6 @@ class Sentencizer(Pipe):
|
|||
seen_period = True
|
||||
if start < len(doc):
|
||||
doc[start].is_sent_start = True
|
||||
return doc
|
||||
|
||||
def pipe(self, stream, batch_size=128):
|
||||
"""Apply the pipe to a stream of documents. This usually happens under
|
||||
the hood when the nlp object is called on a text and all components are
|
||||
applied to the Doc.
|
||||
|
||||
stream (Iterable[Doc]): A stream of documents.
|
||||
batch_size (int): The number of documents to buffer.
|
||||
YIELDS (Doc): Processed documents in order.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/sentencizer#pipe
|
||||
"""
|
||||
for docs in util.minibatch(stream, size=batch_size):
|
||||
predictions = self.predict(docs)
|
||||
self.set_annotations(docs, predictions)
|
||||
yield from docs
|
||||
|
||||
def predict(self, docs):
|
||||
"""Apply the pipe to a batch of docs, without modifying them.
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
from typing import List
|
||||
import numpy
|
||||
import srsly
|
||||
from thinc.api import Model, set_dropout_rate, SequenceCategoricalCrossentropy, Config
|
||||
|
@ -95,34 +94,6 @@ class Tagger(TrainablePipe):
|
|||
"""Data about the labels currently added to the component."""
|
||||
return tuple(self.cfg["labels"])
|
||||
|
||||
def __call__(self, doc):
|
||||
"""Apply the pipe to a Doc.
|
||||
|
||||
doc (Doc): The document to process.
|
||||
RETURNS (Doc): The processed Doc.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/tagger#call
|
||||
"""
|
||||
tags = self.predict([doc])
|
||||
self.set_annotations([doc], tags)
|
||||
return doc
|
||||
|
||||
def pipe(self, stream, *, batch_size=128):
|
||||
"""Apply the pipe to a stream of documents. This usually happens under
|
||||
the hood when the nlp object is called on a text and all components are
|
||||
applied to the Doc.
|
||||
|
||||
stream (Iterable[Doc]): A stream of documents.
|
||||
batch_size (int): The number of documents to buffer.
|
||||
YIELDS (Doc): Processed documents in order.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/tagger#pipe
|
||||
"""
|
||||
for docs in util.minibatch(stream, size=batch_size):
|
||||
tag_ids = self.predict(docs)
|
||||
self.set_annotations(docs, tag_ids)
|
||||
yield from docs
|
||||
|
||||
def predict(self, docs):
|
||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from itertools import islice
|
||||
from typing import Iterable, Tuple, Optional, Dict, List, Callable, Iterator, Any
|
||||
from typing import Iterable, Tuple, Optional, Dict, List, Callable, Any
|
||||
from thinc.api import get_array_module, Model, Optimizer, set_dropout_rate, Config
|
||||
from thinc.types import Floats2d
|
||||
import numpy
|
||||
|
@ -9,7 +9,6 @@ from ..language import Language
|
|||
from ..training import Example, validate_examples, validate_get_examples
|
||||
from ..errors import Errors
|
||||
from ..scorer import Scorer
|
||||
from .. import util
|
||||
from ..tokens import Doc
|
||||
from ..vocab import Vocab
|
||||
|
||||
|
@ -144,22 +143,6 @@ class TextCategorizer(TrainablePipe):
|
|||
"""
|
||||
return self.labels
|
||||
|
||||
def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
|
||||
"""Apply the pipe to a stream of documents. This usually happens under
|
||||
the hood when the nlp object is called on a text and all components are
|
||||
applied to the Doc.
|
||||
|
||||
stream (Iterable[Doc]): A stream of documents.
|
||||
batch_size (int): The number of documents to buffer.
|
||||
YIELDS (Doc): Processed documents in order.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/textcategorizer#pipe
|
||||
"""
|
||||
for docs in util.minibatch(stream, size=batch_size):
|
||||
scores = self.predict(docs)
|
||||
self.set_annotations(docs, scores)
|
||||
yield from docs
|
||||
|
||||
def predict(self, docs: Iterable[Doc]):
|
||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import Iterator, Sequence, Iterable, Optional, Dict, Callable, List
|
||||
from typing import Sequence, Iterable, Optional, Dict, Callable, List
|
||||
from thinc.api import Model, set_dropout_rate, Optimizer, Config
|
||||
from itertools import islice
|
||||
|
||||
|
@ -8,8 +8,6 @@ from ..tokens import Doc
|
|||
from ..vocab import Vocab
|
||||
from ..language import Language
|
||||
from ..errors import Errors
|
||||
from ..util import minibatch
|
||||
|
||||
|
||||
default_model_config = """
|
||||
[model]
|
||||
|
@ -99,36 +97,6 @@ class Tok2Vec(TrainablePipe):
|
|||
if isinstance(node, Tok2VecListener) and node.upstream_name in names:
|
||||
self.add_listener(node, component.name)
|
||||
|
||||
def __call__(self, doc: Doc) -> Doc:
|
||||
"""Add context-sensitive embeddings to the Doc.tensor attribute, allowing
|
||||
them to be used as features by downstream components.
|
||||
|
||||
docs (Doc): The Doc to process.
|
||||
RETURNS (Doc): The processed Doc.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/tok2vec#call
|
||||
"""
|
||||
tokvecses = self.predict([doc])
|
||||
self.set_annotations([doc], tokvecses)
|
||||
return doc
|
||||
|
||||
def pipe(self, stream: Iterator[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
|
||||
"""Apply the pipe to a stream of documents. This usually happens under
|
||||
the hood when the nlp object is called on a text and all components are
|
||||
applied to the Doc.
|
||||
|
||||
stream (Iterable[Doc]): A stream of documents.
|
||||
batch_size (int): The number of documents to buffer.
|
||||
YIELDS (Doc): Processed documents in order.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/tok2vec#pipe
|
||||
"""
|
||||
for docs in minibatch(stream, batch_size):
|
||||
docs = list(docs)
|
||||
tokvecses = self.predict(docs)
|
||||
self.set_annotations(docs, tokvecses)
|
||||
yield from docs
|
||||
|
||||
def predict(self, docs: Iterable[Doc]):
|
||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||
Returns a single tensor for a batch of documents.
|
||||
|
|
|
@ -28,7 +28,7 @@ cdef class TrainablePipe(Pipe):
|
|||
vocab (Vocab): The shared vocabulary.
|
||||
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
||||
name (str): The component instance name.
|
||||
**cfg: Additonal settings and config parameters.
|
||||
**cfg: Additional settings and config parameters.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/pipe#init
|
||||
"""
|
||||
|
@ -47,9 +47,13 @@ cdef class TrainablePipe(Pipe):
|
|||
|
||||
DOCS: https://nightly.spacy.io/api/pipe#call
|
||||
"""
|
||||
error_handler = self.get_error_handler()
|
||||
try:
|
||||
scores = self.predict([doc])
|
||||
self.set_annotations([doc], scores)
|
||||
return doc
|
||||
except Exception as e:
|
||||
error_handler(self.name, self, [doc], e)
|
||||
|
||||
def pipe(self, stream: Iterable[Doc], *, batch_size: int=128) -> Iterator[Doc]:
|
||||
"""Apply the pipe to a stream of documents. This usually happens under
|
||||
|
@ -58,14 +62,21 @@ cdef class TrainablePipe(Pipe):
|
|||
|
||||
stream (Iterable[Doc]): A stream of documents.
|
||||
batch_size (int): The number of documents to buffer.
|
||||
error_handler (Callable[[str, List[Doc], Exception], Any]): Function that
|
||||
deals with a failing batch of documents. The default function just reraises
|
||||
the exception.
|
||||
YIELDS (Doc): Processed documents in order.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/pipe#pipe
|
||||
"""
|
||||
error_handler = self.get_error_handler()
|
||||
for docs in util.minibatch(stream, size=batch_size):
|
||||
try:
|
||||
scores = self.predict(docs)
|
||||
self.set_annotations(docs, scores)
|
||||
yield from docs
|
||||
except Exception as e:
|
||||
error_handler(self.name, self, docs, e)
|
||||
|
||||
def predict(self, docs: Iterable[Doc]):
|
||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||
|
|
|
@ -7,7 +7,6 @@ from libcpp.vector cimport vector
|
|||
from libc.string cimport memset, memcpy
|
||||
from libc.stdlib cimport calloc, free
|
||||
import random
|
||||
from typing import Optional
|
||||
|
||||
import srsly
|
||||
from thinc.api import set_dropout_rate, CupyOps
|
||||
|
@ -30,7 +29,6 @@ from ..training import validate_examples, validate_get_examples
|
|||
from ..errors import Errors, Warnings
|
||||
from .. import util
|
||||
|
||||
|
||||
cdef class Parser(TrainablePipe):
|
||||
"""
|
||||
Base class of the DependencyParser and EntityRecognizer.
|
||||
|
@ -175,32 +173,31 @@ cdef class Parser(TrainablePipe):
|
|||
with self.model.use_params(params):
|
||||
yield
|
||||
|
||||
def __call__(self, Doc doc):
|
||||
"""Apply the parser or entity recognizer, setting the annotations onto
|
||||
the `Doc` object.
|
||||
|
||||
doc (Doc): The document to be processed.
|
||||
"""
|
||||
states = self.predict([doc])
|
||||
self.set_annotations([doc], states)
|
||||
return doc
|
||||
|
||||
def pipe(self, docs, *, int batch_size=256):
|
||||
"""Process a stream of documents.
|
||||
|
||||
stream: The sequence of documents to process.
|
||||
batch_size (int): Number of documents to accumulate into a working set.
|
||||
error_handler (Callable[[str, List[Doc], Exception], Any]): Function that
|
||||
deals with a failing batch of documents. The default function just reraises
|
||||
the exception.
|
||||
|
||||
YIELDS (Doc): Documents, in order.
|
||||
"""
|
||||
cdef Doc doc
|
||||
error_handler = self.get_error_handler()
|
||||
for batch in util.minibatch(docs, size=batch_size):
|
||||
batch_in_order = list(batch)
|
||||
try:
|
||||
by_length = sorted(batch, key=lambda doc: len(doc))
|
||||
for subbatch in util.minibatch(by_length, size=max(batch_size//4, 2)):
|
||||
subbatch = list(subbatch)
|
||||
parse_states = self.predict(subbatch)
|
||||
self.set_annotations(subbatch, parse_states)
|
||||
yield from batch_in_order
|
||||
except Exception as e:
|
||||
error_handler(self.name, self, batch_in_order, e)
|
||||
|
||||
|
||||
def predict(self, docs):
|
||||
if isinstance(docs, Doc):
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
import itertools
|
||||
import logging
|
||||
from unittest import mock
|
||||
import pytest
|
||||
from spacy.language import Language
|
||||
from spacy.tokens import Doc, Span
|
||||
|
@ -6,7 +8,7 @@ from spacy.vocab import Vocab
|
|||
from spacy.training import Example
|
||||
from spacy.lang.en import English
|
||||
from spacy.lang.de import German
|
||||
from spacy.util import registry
|
||||
from spacy.util import registry, ignore_error, raise_error
|
||||
import spacy
|
||||
|
||||
from .util import add_vecs_to_vocab, assert_docs_equal
|
||||
|
@ -161,6 +163,81 @@ def test_language_pipe_stream(nlp2, n_process, texts):
|
|||
assert_docs_equal(doc, expected_doc)
|
||||
|
||||
|
||||
def test_language_pipe_error_handler():
|
||||
"""Test that the error handling of nlp.pipe works well"""
|
||||
nlp = English()
|
||||
nlp.add_pipe("merge_subtokens")
|
||||
nlp.initialize()
|
||||
texts = ["Curious to see what will happen to this text.", "And this one."]
|
||||
# the pipeline fails because there's no parser
|
||||
with pytest.raises(ValueError):
|
||||
nlp(texts[0])
|
||||
with pytest.raises(ValueError):
|
||||
list(nlp.pipe(texts))
|
||||
nlp.set_error_handler(raise_error)
|
||||
with pytest.raises(ValueError):
|
||||
list(nlp.pipe(texts))
|
||||
# set explicitely to ignoring
|
||||
nlp.set_error_handler(ignore_error)
|
||||
docs = list(nlp.pipe(texts))
|
||||
assert len(docs) == 0
|
||||
nlp(texts[0])
|
||||
|
||||
|
||||
def test_language_pipe_error_handler_custom(en_vocab):
|
||||
"""Test the error handling of a custom component that has no pipe method"""
|
||||
@Language.component("my_evil_component")
|
||||
def evil_component(doc):
|
||||
if "2" in doc.text:
|
||||
raise ValueError("no dice")
|
||||
return doc
|
||||
|
||||
def warn_error(proc_name, proc, docs, e):
|
||||
from spacy.util import logger
|
||||
logger.warning(f"Trouble with component {proc_name}.")
|
||||
|
||||
nlp = English()
|
||||
nlp.add_pipe("my_evil_component")
|
||||
nlp.initialize()
|
||||
texts = ["TEXT 111", "TEXT 222", "TEXT 333", "TEXT 342", "TEXT 666"]
|
||||
with pytest.raises(ValueError):
|
||||
# the evil custom component throws an error
|
||||
list(nlp.pipe(texts))
|
||||
|
||||
nlp.set_error_handler(warn_error)
|
||||
logger = logging.getLogger("spacy")
|
||||
with mock.patch.object(logger, "warning") as mock_warning:
|
||||
# the errors by the evil custom component raise a warning for each bad batch
|
||||
docs = list(nlp.pipe(texts))
|
||||
mock_warning.assert_called()
|
||||
assert mock_warning.call_count == 2
|
||||
assert len(docs) + mock_warning.call_count == len(texts)
|
||||
assert [doc.text for doc in docs] == ["TEXT 111", "TEXT 333", "TEXT 666"]
|
||||
|
||||
|
||||
def test_language_pipe_error_handler_pipe(en_vocab):
|
||||
"""Test the error handling of a component's pipe method"""
|
||||
@Language.component("my_sentences")
|
||||
def perhaps_set_sentences(doc):
|
||||
if not doc.text.startswith("4"):
|
||||
doc[-1].is_sent_start = True
|
||||
return doc
|
||||
|
||||
texts = [f"{str(i)} is enough. Done" for i in range(100)]
|
||||
nlp = English()
|
||||
nlp.add_pipe("my_sentences")
|
||||
entity_linker = nlp.add_pipe("entity_linker", config={"entity_vector_length": 3})
|
||||
entity_linker.kb.add_entity(entity="Q1", freq=12, entity_vector=[1, 2, 3])
|
||||
nlp.initialize()
|
||||
with pytest.raises(ValueError):
|
||||
# the entity linker requires sentence boundaries, will throw an error otherwise
|
||||
docs = list(nlp.pipe(texts, batch_size=10))
|
||||
nlp.set_error_handler(ignore_error)
|
||||
docs = list(nlp.pipe(texts, batch_size=10))
|
||||
# we lose/ignore the failing 0-9 and 40-49 batches
|
||||
assert len(docs) == 80
|
||||
|
||||
|
||||
def test_language_from_config_before_after_init():
|
||||
name = "test_language_from_config_before_after_init"
|
||||
ran_before = False
|
||||
|
|
|
@ -1420,15 +1420,28 @@ def check_bool_env_var(env_var: str) -> bool:
|
|||
return bool(value)
|
||||
|
||||
|
||||
def _pipe(docs, proc, kwargs):
|
||||
def _pipe(docs, proc, name, default_error_handler, kwargs):
|
||||
if hasattr(proc, "pipe"):
|
||||
yield from proc.pipe(docs, **kwargs)
|
||||
else:
|
||||
# We added some args for pipe that __call__ doesn't expect.
|
||||
kwargs = dict(kwargs)
|
||||
error_handler = default_error_handler
|
||||
if hasattr(proc, "get_error_handler"):
|
||||
error_handler = proc.get_error_handler()
|
||||
for arg in ["batch_size"]:
|
||||
if arg in kwargs:
|
||||
kwargs.pop(arg)
|
||||
for doc in docs:
|
||||
try:
|
||||
doc = proc(doc, **kwargs)
|
||||
yield doc
|
||||
except Exception as e:
|
||||
error_handler(name, proc, [doc], e)
|
||||
|
||||
|
||||
def raise_error(proc_name, proc, docs, e):
|
||||
raise e
|
||||
|
||||
def ignore_error(proc_name, proc, docs, e):
|
||||
pass
|
||||
|
|
|
@ -203,6 +203,28 @@ more efficient than processing texts one-by-one.
|
|||
| `n_process` <Tag variant="new">2.2.2</Tag> | Number of processors to use. Defaults to `1`. ~~int~~ |
|
||||
| **YIELDS** | Documents in the order of the original text. ~~Doc~~ |
|
||||
|
||||
## Language.set_error_handler {#set_error_handler tag="method"}
|
||||
|
||||
Define a callback that will be invoked when an error is thrown during processing
|
||||
of one or more documents. Specifically, this function will call
|
||||
[`set_error_handler`](/api/pipe#set_error_handler) on all the pipeline
|
||||
components that define that function. The error handler will be invoked with the
|
||||
original component's name, the component itself, the list of documents that was
|
||||
being processed, and the original error.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> def warn_error(proc_name, proc, docs, e):
|
||||
> print(f"An error occurred when applying component {proc_name}.")
|
||||
>
|
||||
> nlp.set_error_handler(warn_error)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| --------------- | -------------------------------------------------------------------------------------------------------------- |
|
||||
| `error_handler` | A function that performs custom error handling. ~~Callable[[str, Callable[[Doc], Doc], List[Doc], Exception]~~ |
|
||||
|
||||
## Language.initialize {#initialize tag="method" new="3"}
|
||||
|
||||
Initialize the pipeline for training and return an
|
||||
|
|
|
@ -100,6 +100,47 @@ applied to the `Doc` in order. Both [`__call__`](/api/pipe#call) and
|
|||
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
|
||||
| **YIELDS** | The processed documents in order. ~~Doc~~ |
|
||||
|
||||
## TrainablePipe.set_error_handler {#set_error_handler tag="method"}
|
||||
|
||||
Define a callback that will be invoked when an error is thrown during processing
|
||||
of one or more documents with either [`__call__`](/api/pipe#call) or
|
||||
[`pipe`](/api/pipe#pipe). The error handler will be invoked with the original
|
||||
component's name, the component itself, the list of documents that was being
|
||||
processed, and the original error.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> def warn_error(proc_name, proc, docs, e):
|
||||
> print(f"An error occurred when applying component {proc_name}.")
|
||||
>
|
||||
> pipe = nlp.add_pipe("ner")
|
||||
> pipe.set_error_handler(warn_error)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| --------------- | -------------------------------------------------------------------------------------------------------------- |
|
||||
| `error_handler` | A function that performs custom error handling. ~~Callable[[str, Callable[[Doc], Doc], List[Doc], Exception]~~ |
|
||||
|
||||
## TrainablePipe.get_error_handler {#get_error_handler tag="method"}
|
||||
|
||||
Retrieve the callback that performs error handling for this component's
|
||||
[`__call__`](/api/pipe#call) and [`pipe`](/api/pipe#pipe) methods. If no custom
|
||||
function was previously defined with
|
||||
[`set_error_handler`](/api/pipe#set_error_handler), a default function is
|
||||
returned that simply reraises the exception.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> pipe = nlp.add_pipe("ner")
|
||||
> error_handler = pipe.get_error_handler()
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ---------------------------------------------------------------------------------------------------------------- |
|
||||
| **RETURNS** | The function that performs custom error handling. ~~Callable[[str, Callable[[Doc], Doc], List[Doc], Exception]~~ |
|
||||
|
||||
## TrainablePipe.initialize {#initialize tag="method" new="3"}
|
||||
|
||||
Initialize the component for training. `get_examples` should be a function that
|
||||
|
@ -191,7 +232,7 @@ predictions and gold-standard annotations, and update the component's model.
|
|||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
|
|
Loading…
Reference in New Issue
Block a user