mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	Auto-format code with black (#11687)
Co-authored-by: explosion-bot <explosion-bot@users.noreply.github.com>
This commit is contained in:
		
							parent
							
								
									fb280001cc
								
							
						
					
					
						commit
						84d9cb6b38
					
				| 
						 | 
					@ -231,7 +231,7 @@ def test_tok2vec_listener_callback():
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def test_tok2vec_listener_overfitting():
 | 
					def test_tok2vec_listener_overfitting():
 | 
				
			||||||
    """ Test that a pipeline with a listener properly overfits, even if 'tok2vec' is in the annotating components """
 | 
					    """Test that a pipeline with a listener properly overfits, even if 'tok2vec' is in the annotating components"""
 | 
				
			||||||
    orig_config = Config().from_str(cfg_string)
 | 
					    orig_config = Config().from_str(cfg_string)
 | 
				
			||||||
    nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
 | 
					    nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
 | 
				
			||||||
    train_examples = []
 | 
					    train_examples = []
 | 
				
			||||||
| 
						 | 
					@ -264,7 +264,7 @@ def test_tok2vec_listener_overfitting():
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def test_tok2vec_frozen_not_annotating():
 | 
					def test_tok2vec_frozen_not_annotating():
 | 
				
			||||||
    """ Test that a pipeline with a frozen tok2vec raises an error when the tok2vec is not annotating """
 | 
					    """Test that a pipeline with a frozen tok2vec raises an error when the tok2vec is not annotating"""
 | 
				
			||||||
    orig_config = Config().from_str(cfg_string)
 | 
					    orig_config = Config().from_str(cfg_string)
 | 
				
			||||||
    nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
 | 
					    nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
 | 
				
			||||||
    train_examples = []
 | 
					    train_examples = []
 | 
				
			||||||
| 
						 | 
					@ -274,12 +274,16 @@ def test_tok2vec_frozen_not_annotating():
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for i in range(2):
 | 
					    for i in range(2):
 | 
				
			||||||
        losses = {}
 | 
					        losses = {}
 | 
				
			||||||
        with pytest.raises(ValueError, match=r"the tok2vec embedding layer is not updated"):
 | 
					        with pytest.raises(
 | 
				
			||||||
            nlp.update(train_examples, sgd=optimizer, losses=losses, exclude=["tok2vec"])
 | 
					            ValueError, match=r"the tok2vec embedding layer is not updated"
 | 
				
			||||||
 | 
					        ):
 | 
				
			||||||
 | 
					            nlp.update(
 | 
				
			||||||
 | 
					                train_examples, sgd=optimizer, losses=losses, exclude=["tok2vec"]
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def test_tok2vec_frozen_overfitting():
 | 
					def test_tok2vec_frozen_overfitting():
 | 
				
			||||||
    """ Test that a pipeline with a frozen & annotating tok2vec can still overfit """
 | 
					    """Test that a pipeline with a frozen & annotating tok2vec can still overfit"""
 | 
				
			||||||
    orig_config = Config().from_str(cfg_string)
 | 
					    orig_config = Config().from_str(cfg_string)
 | 
				
			||||||
    nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
 | 
					    nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
 | 
				
			||||||
    train_examples = []
 | 
					    train_examples = []
 | 
				
			||||||
| 
						 | 
					@ -289,7 +293,13 @@ def test_tok2vec_frozen_overfitting():
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for i in range(100):
 | 
					    for i in range(100):
 | 
				
			||||||
        losses = {}
 | 
					        losses = {}
 | 
				
			||||||
        nlp.update(train_examples, sgd=optimizer, losses=losses, exclude=["tok2vec"], annotates=["tok2vec"])
 | 
					        nlp.update(
 | 
				
			||||||
 | 
					            train_examples,
 | 
				
			||||||
 | 
					            sgd=optimizer,
 | 
				
			||||||
 | 
					            losses=losses,
 | 
				
			||||||
 | 
					            exclude=["tok2vec"],
 | 
				
			||||||
 | 
					            annotates=["tok2vec"],
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
    assert losses["tagger"] < 0.0001
 | 
					    assert losses["tagger"] < 0.0001
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # test the trained model
 | 
					    # test the trained model
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user