mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Pass option for pretrained vectors in pipeline
This commit is contained in:
parent
2a93404da6
commit
84e637e2e6
|
@ -41,7 +41,7 @@ from .syntax import nonproj
|
|||
from .compat import json_dumps
|
||||
|
||||
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP, POS
|
||||
from ._ml import rebatch, Tok2Vec, flatten, get_col, doc2feats
|
||||
from ._ml import rebatch, Tok2Vec, flatten
|
||||
from ._ml import build_text_classifier, build_tagger_model
|
||||
from .parts_of_speech import X
|
||||
|
||||
|
@ -137,6 +137,7 @@ class BaseThincComponent(object):
|
|||
def from_bytes(self, bytes_data, **exclude):
|
||||
def load_model(b):
|
||||
if self.model is True:
|
||||
self.cfg['pretrained_dims'] = self.vocab.vectors_length
|
||||
self.model = self.Model(**self.cfg)
|
||||
self.model.from_bytes(b)
|
||||
|
||||
|
@ -159,6 +160,7 @@ class BaseThincComponent(object):
|
|||
def from_disk(self, path, **exclude):
|
||||
def load_model(p):
|
||||
if self.model is True:
|
||||
self.cfg['pretrained_dims'] = self.vocab.vectors_length
|
||||
self.model = self.Model(**self.cfg)
|
||||
self.model.from_bytes(p.open('rb').read())
|
||||
|
||||
|
@ -193,7 +195,7 @@ class TokenVectorEncoder(BaseThincComponent):
|
|||
"""
|
||||
width = util.env_opt('token_vector_width', width)
|
||||
embed_size = util.env_opt('embed_size', embed_size)
|
||||
return Tok2Vec(width, embed_size, preprocess=None)
|
||||
return Tok2Vec(width, embed_size, **cfg)
|
||||
|
||||
def __init__(self, vocab, model=True, **cfg):
|
||||
"""Construct a new statistical model. Weights are not allocated on
|
||||
|
@ -210,7 +212,6 @@ class TokenVectorEncoder(BaseThincComponent):
|
|||
>>> tok2vec.model = tok2vec.Model(128, 5000)
|
||||
"""
|
||||
self.vocab = vocab
|
||||
self.doc2feats = doc2feats()
|
||||
self.model = model
|
||||
self.cfg = dict(cfg)
|
||||
|
||||
|
@ -245,8 +246,7 @@ class TokenVectorEncoder(BaseThincComponent):
|
|||
docs (iterable): A sequence of `Doc` objects.
|
||||
RETURNS (object): Vector representations for each token in the documents.
|
||||
"""
|
||||
feats = self.doc2feats(docs)
|
||||
tokvecs = self.model(feats)
|
||||
tokvecs = self.model(docs)
|
||||
return tokvecs
|
||||
|
||||
def set_annotations(self, docs, tokvecses):
|
||||
|
@ -270,8 +270,7 @@ class TokenVectorEncoder(BaseThincComponent):
|
|||
"""
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
feats = self.doc2feats(docs)
|
||||
tokvecs, bp_tokvecs = self.model.begin_update(feats, drop=drop)
|
||||
tokvecs, bp_tokvecs = self.model.begin_update(docs, drop=drop)
|
||||
return tokvecs, bp_tokvecs
|
||||
|
||||
def get_loss(self, docs, golds, scores):
|
||||
|
@ -285,9 +284,8 @@ class TokenVectorEncoder(BaseThincComponent):
|
|||
gold_tuples (iterable): Gold-standard training data.
|
||||
pipeline (list): The pipeline the model is part of.
|
||||
"""
|
||||
self.doc2feats = doc2feats()
|
||||
if self.model is True:
|
||||
self.model = self.Model()
|
||||
self.model = self.Model(**self.cfg)
|
||||
|
||||
|
||||
class NeuralTagger(BaseThincComponent):
|
||||
|
@ -394,12 +392,14 @@ class NeuralTagger(BaseThincComponent):
|
|||
exc=vocab.morphology.exc)
|
||||
token_vector_width = pipeline[0].model.nO
|
||||
if self.model is True:
|
||||
self.model = self.Model(self.vocab.morphology.n_tags, token_vector_width)
|
||||
self.model = self.Model(self.vocab.morphology.n_tags, token_vector_width,
|
||||
pretrained_dims=self.vocab.vectors_length)
|
||||
|
||||
@classmethod
|
||||
def Model(cls, n_tags, token_vector_width):
|
||||
return build_tagger_model(n_tags, token_vector_width)
|
||||
|
||||
def Model(cls, n_tags, token_vector_width, pretrained_dims=0):
|
||||
return build_tagger_model(n_tags, token_vector_width,
|
||||
pretrained_dims)
|
||||
|
||||
def use_params(self, params):
|
||||
with self.model.use_params(params):
|
||||
yield
|
||||
|
@ -419,7 +419,8 @@ class NeuralTagger(BaseThincComponent):
|
|||
if self.model is True:
|
||||
token_vector_width = util.env_opt('token_vector_width',
|
||||
self.cfg.get('token_vector_width', 128))
|
||||
self.model = self.Model(self.vocab.morphology.n_tags, token_vector_width)
|
||||
self.model = self.Model(self.vocab.morphology.n_tags, token_vector_width,
|
||||
pretrained_dims=self.vocab.vectors_length)
|
||||
self.model.from_bytes(b)
|
||||
|
||||
def load_tag_map(b):
|
||||
|
@ -428,7 +429,7 @@ class NeuralTagger(BaseThincComponent):
|
|||
self.vocab.strings, tag_map=tag_map,
|
||||
lemmatizer=self.vocab.morphology.lemmatizer,
|
||||
exc=self.vocab.morphology.exc)
|
||||
|
||||
|
||||
deserialize = OrderedDict((
|
||||
('vocab', lambda b: self.vocab.from_bytes(b)),
|
||||
('tag_map', load_tag_map),
|
||||
|
@ -454,7 +455,8 @@ class NeuralTagger(BaseThincComponent):
|
|||
if self.model is True:
|
||||
token_vector_width = util.env_opt('token_vector_width',
|
||||
self.cfg.get('token_vector_width', 128))
|
||||
self.model = self.Model(self.vocab.morphology.n_tags, token_vector_width)
|
||||
self.model = self.Model(self.vocab.morphology.n_tags, token_vector_width,
|
||||
pretrained_dims=self.vocab.vectors_length)
|
||||
self.model.from_bytes(p.open('rb').read())
|
||||
|
||||
def load_tag_map(p):
|
||||
|
@ -503,12 +505,14 @@ class NeuralLabeller(NeuralTagger):
|
|||
self.labels[dep] = len(self.labels)
|
||||
token_vector_width = pipeline[0].model.nO
|
||||
if self.model is True:
|
||||
self.model = self.Model(len(self.labels), token_vector_width)
|
||||
self.model = self.Model(len(self.labels), token_vector_width,
|
||||
pretrained_dims=self.vocab.vectors_length)
|
||||
|
||||
@classmethod
|
||||
def Model(cls, n_tags, token_vector_width):
|
||||
return build_tagger_model(n_tags, token_vector_width)
|
||||
|
||||
def Model(cls, n_tags, token_vector_width, pretrained_dims=0):
|
||||
return build_tagger_model(n_tags, token_vector_width,
|
||||
pretrained_dims)
|
||||
|
||||
def get_loss(self, docs, golds, scores):
|
||||
scores = self.model.ops.flatten(scores)
|
||||
cdef int idx = 0
|
||||
|
@ -653,6 +657,7 @@ class TextCategorizer(BaseThincComponent):
|
|||
else:
|
||||
token_vector_width = 64
|
||||
if self.model is True:
|
||||
self.cfg['pretrained_dims'] = self.vocab.vectors_length
|
||||
self.model = self.Model(len(self.labels), token_vector_width,
|
||||
**self.cfg)
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user