mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Tidy up docstrings
This commit is contained in:
parent
c45ed32c74
commit
852e1f105c
|
@ -195,6 +195,7 @@ class Language(object):
|
|||
self._meta = value
|
||||
|
||||
# Conveniences to access pipeline components
|
||||
# Shouldn't be used anymore!
|
||||
@property
|
||||
def tensorizer(self):
|
||||
return self.get_pipe("tensorizer")
|
||||
|
@ -228,6 +229,8 @@ class Language(object):
|
|||
|
||||
name (unicode): Name of pipeline component to get.
|
||||
RETURNS (callable): The pipeline component.
|
||||
|
||||
DOCS: https://spacy.io/api/language#get_pipe
|
||||
"""
|
||||
for pipe_name, component in self.pipeline:
|
||||
if pipe_name == name:
|
||||
|
@ -240,6 +243,8 @@ class Language(object):
|
|||
name (unicode): Factory name to look up in `Language.factories`.
|
||||
config (dict): Configuration parameters to initialise component.
|
||||
RETURNS (callable): Pipeline component.
|
||||
|
||||
DOCS: https://spacy.io/api/language#create_pipe
|
||||
"""
|
||||
if name not in self.factories:
|
||||
if name == "sbd":
|
||||
|
@ -266,9 +271,7 @@ class Language(object):
|
|||
first (bool): Insert component first / not first in the pipeline.
|
||||
last (bool): Insert component last / not last in the pipeline.
|
||||
|
||||
EXAMPLE:
|
||||
>>> nlp.add_pipe(component, before='ner')
|
||||
>>> nlp.add_pipe(component, name='custom_name', last=True)
|
||||
DOCS: https://spacy.io/api/language#add_pipe
|
||||
"""
|
||||
if not hasattr(component, "__call__"):
|
||||
msg = Errors.E003.format(component=repr(component), name=name)
|
||||
|
@ -310,6 +313,8 @@ class Language(object):
|
|||
|
||||
name (unicode): Name of the component.
|
||||
RETURNS (bool): Whether a component of the name exists in the pipeline.
|
||||
|
||||
DOCS: https://spacy.io/api/language#has_pipe
|
||||
"""
|
||||
return name in self.pipe_names
|
||||
|
||||
|
@ -318,6 +323,8 @@ class Language(object):
|
|||
|
||||
name (unicode): Name of the component to replace.
|
||||
component (callable): Pipeline component.
|
||||
|
||||
DOCS: https://spacy.io/api/language#replace_pipe
|
||||
"""
|
||||
if name not in self.pipe_names:
|
||||
raise ValueError(Errors.E001.format(name=name, opts=self.pipe_names))
|
||||
|
@ -328,6 +335,8 @@ class Language(object):
|
|||
|
||||
old_name (unicode): Name of the component to rename.
|
||||
new_name (unicode): New name of the component.
|
||||
|
||||
DOCS: https://spacy.io/api/language#rename_pipe
|
||||
"""
|
||||
if old_name not in self.pipe_names:
|
||||
raise ValueError(Errors.E001.format(name=old_name, opts=self.pipe_names))
|
||||
|
@ -341,6 +350,8 @@ class Language(object):
|
|||
|
||||
name (unicode): Name of the component to remove.
|
||||
RETURNS (tuple): A `(name, component)` tuple of the removed component.
|
||||
|
||||
DOCS: https://spacy.io/api/language#remove_pipe
|
||||
"""
|
||||
if name not in self.pipe_names:
|
||||
raise ValueError(Errors.E001.format(name=name, opts=self.pipe_names))
|
||||
|
@ -357,10 +368,7 @@ class Language(object):
|
|||
for specific components.
|
||||
RETURNS (Doc): A container for accessing the annotations.
|
||||
|
||||
EXAMPLE:
|
||||
>>> tokens = nlp('An example sentence. Another example sentence.')
|
||||
>>> tokens[0].text, tokens[0].head.tag_
|
||||
('An', 'NN')
|
||||
DOCS: https://spacy.io/api/language#call
|
||||
"""
|
||||
if len(text) > self.max_length:
|
||||
raise ValueError(
|
||||
|
@ -385,17 +393,7 @@ class Language(object):
|
|||
of the block. Otherwise, a DisabledPipes object is returned, that has
|
||||
a `.restore()` method you can use to undo your changes.
|
||||
|
||||
EXAMPLE:
|
||||
>>> nlp.add_pipe('parser')
|
||||
>>> nlp.add_pipe('tagger')
|
||||
>>> with nlp.disable_pipes('parser', 'tagger'):
|
||||
>>> assert not nlp.has_pipe('parser')
|
||||
>>> assert nlp.has_pipe('parser')
|
||||
>>> disabled = nlp.disable_pipes('parser')
|
||||
>>> assert len(disabled) == 1
|
||||
>>> assert not nlp.has_pipe('parser')
|
||||
>>> disabled.restore()
|
||||
>>> assert nlp.has_pipe('parser')
|
||||
DOCS: https://spacy.io/api/language#disable_pipes
|
||||
"""
|
||||
return DisabledPipes(self, *names)
|
||||
|
||||
|
@ -411,11 +409,7 @@ class Language(object):
|
|||
sgd (callable): An optimizer.
|
||||
RETURNS (dict): Results from the update.
|
||||
|
||||
EXAMPLE:
|
||||
>>> with nlp.begin_training(gold) as (trainer, optimizer):
|
||||
>>> for epoch in trainer.epochs(gold):
|
||||
>>> for docs, golds in epoch:
|
||||
>>> state = nlp.update(docs, golds, sgd=optimizer)
|
||||
DOCS: https://spacy.io/api/language#update
|
||||
"""
|
||||
if len(docs) != len(golds):
|
||||
raise IndexError(Errors.E009.format(n_docs=len(docs), n_golds=len(golds)))
|
||||
|
@ -425,7 +419,6 @@ class Language(object):
|
|||
if self._optimizer is None:
|
||||
self._optimizer = create_default_optimizer(Model.ops)
|
||||
sgd = self._optimizer
|
||||
|
||||
# Allow dict of args to GoldParse, instead of GoldParse objects.
|
||||
gold_objs = []
|
||||
doc_objs = []
|
||||
|
@ -446,7 +439,6 @@ class Language(object):
|
|||
get_grads.alpha = sgd.alpha
|
||||
get_grads.b1 = sgd.b1
|
||||
get_grads.b2 = sgd.b2
|
||||
|
||||
pipes = list(self.pipeline)
|
||||
random.shuffle(pipes)
|
||||
if component_cfg is None:
|
||||
|
@ -481,6 +473,7 @@ class Language(object):
|
|||
>>> raw_batch = [nlp.make_doc(text) for text in next(raw_text_batches)]
|
||||
>>> nlp.rehearse(raw_batch)
|
||||
"""
|
||||
# TODO: document
|
||||
if len(docs) == 0:
|
||||
return
|
||||
if sgd is None:
|
||||
|
@ -503,7 +496,6 @@ class Language(object):
|
|||
get_grads.alpha = sgd.alpha
|
||||
get_grads.b1 = sgd.b1
|
||||
get_grads.b2 = sgd.b2
|
||||
|
||||
for name, proc in pipes:
|
||||
if not hasattr(proc, "rehearse"):
|
||||
continue
|
||||
|
@ -511,7 +503,6 @@ class Language(object):
|
|||
proc.rehearse(docs, sgd=get_grads, losses=losses, **config.get(name, {}))
|
||||
for key, (W, dW) in grads.items():
|
||||
sgd(W, dW, key=key)
|
||||
|
||||
return losses
|
||||
|
||||
def preprocess_gold(self, docs_golds):
|
||||
|
@ -534,7 +525,9 @@ class Language(object):
|
|||
get_gold_tuples (function): Function returning gold data
|
||||
component_cfg (dict): Config parameters for specific components.
|
||||
**cfg: Config parameters.
|
||||
RETURNS: An optimizer
|
||||
RETURNS: An optimizer.
|
||||
|
||||
DOCS: https://spacy.io/api/language#begin_training
|
||||
"""
|
||||
if get_gold_tuples is None:
|
||||
get_gold_tuples = lambda: []
|
||||
|
@ -660,23 +653,19 @@ class Language(object):
|
|||
"""Process texts as a stream, and yield `Doc` objects in order.
|
||||
|
||||
texts (iterator): A sequence of texts to process.
|
||||
as_tuples (bool):
|
||||
If set to True, inputs should be a sequence of
|
||||
as_tuples (bool): If set to True, inputs should be a sequence of
|
||||
(text, context) tuples. Output will then be a sequence of
|
||||
(doc, context) tuples. Defaults to False.
|
||||
n_threads (int): Currently inactive.
|
||||
batch_size (int): The number of texts to buffer.
|
||||
disable (list): Names of the pipeline components to disable.
|
||||
cleanup (bool): If True, unneeded strings are freed,
|
||||
to control memory use. Experimental.
|
||||
component_cfg (dict): An optional dictionary with extra keyword arguments
|
||||
for specific components.
|
||||
cleanup (bool): If True, unneeded strings are freed to control memory
|
||||
use. Experimental.
|
||||
component_cfg (dict): An optional dictionary with extra keyword
|
||||
arguments for specific components.
|
||||
YIELDS (Doc): Documents in the order of the original text.
|
||||
|
||||
EXAMPLE:
|
||||
>>> texts = [u'One document.', u'...', u'Lots of documents']
|
||||
>>> for doc in nlp.pipe(texts, batch_size=50, n_threads=4):
|
||||
>>> assert doc.is_parsed
|
||||
DOCS: https://spacy.io/api/language#pipe
|
||||
"""
|
||||
if as_tuples:
|
||||
text_context1, text_context2 = itertools.tee(texts)
|
||||
|
|
Loading…
Reference in New Issue
Block a user