Restore state of _ml.py

This commit is contained in:
Matthew Honnibal 2017-08-18 14:55:23 -05:00
parent 426f84937f
commit 85794c1167

View File

@ -5,6 +5,7 @@ from thinc.neural._classes.hash_embed import HashEmbed
from thinc.neural.ops import NumpyOps, CupyOps from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural.util import get_array_module from thinc.neural.util import get_array_module
import random import random
import cytoolz
from thinc.neural._classes.convolution import ExtractWindow from thinc.neural._classes.convolution import ExtractWindow
from thinc.neural._classes.static_vectors import StaticVectors from thinc.neural._classes.static_vectors import StaticVectors
@ -26,6 +27,7 @@ from thinc.neural._classes.rnn import BiLSTM
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP
from .tokens.doc import Doc from .tokens.doc import Doc
from . import util
import numpy import numpy
import io import io
@ -56,6 +58,27 @@ def _logistic(X, drop=0.):
return Y, logistic_bwd return Y, logistic_bwd
@layerize
def add_tuples(X, drop=0.):
"""Give inputs of sequence pairs, where each sequence is (vals, length),
sum the values, returning a single sequence.
If input is:
((vals1, length), (vals2, length)
Output is:
(vals1+vals2, length)
vals are a single tensor for the whole batch.
"""
(vals1, length1), (vals2, length2) = X
assert length1 == length2
def add_tuples_bwd(dY, sgd=None):
return (dY, dY)
return (vals1+vals2, length), add_tuples_bwd
def _zero_init(model): def _zero_init(model):
def _zero_init_impl(self, X, y): def _zero_init_impl(self, X, y):
self.W.fill(0) self.W.fill(0)
@ -64,6 +87,7 @@ def _zero_init(model):
model.W.fill(0.) model.W.fill(0.)
return model return model
@layerize @layerize
def _preprocess_doc(docs, drop=0.): def _preprocess_doc(docs, drop=0.):
keys = [doc.to_array([LOWER]) for doc in docs] keys = [doc.to_array([LOWER]) for doc in docs]
@ -75,7 +99,6 @@ def _preprocess_doc(docs, drop=0.):
return (keys, vals, lengths), None return (keys, vals, lengths), None
def _init_for_precomputed(W, ops): def _init_for_precomputed(W, ops):
if (W**2).sum() != 0.: if (W**2).sum() != 0.:
return return
@ -83,6 +106,7 @@ def _init_for_precomputed(W, ops):
ops.xavier_uniform_init(reshaped) ops.xavier_uniform_init(reshaped)
W[:] = reshaped.reshape(W.shape) W[:] = reshaped.reshape(W.shape)
@describe.on_data(_set_dimensions_if_needed) @describe.on_data(_set_dimensions_if_needed)
@describe.attributes( @describe.attributes(
nI=Dimension("Input size"), nI=Dimension("Input size"),
@ -187,10 +211,21 @@ class PrecomputableMaxouts(Model):
return Yfp, backward return Yfp, backward
def drop_layer(layer, factor=2.):
def drop_layer_fwd(X, drop=0.):
drop *= factor
mask = layer.ops.get_dropout_mask((1,), drop)
if mask is None or mask > 0:
return layer.begin_update(X, drop=drop)
else:
return X, lambda dX, sgd=None: dX
return wrap(drop_layer_fwd, layer)
def Tok2Vec(width, embed_size, preprocess=None): def Tok2Vec(width, embed_size, preprocess=None):
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE] cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}): with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
norm = get_col(cols.index(NORM)) >> HashEmbed(width, embed_size, name='embed_lower') norm = get_col(cols.index(NORM)) >> HashEmbed(width, embed_size, name='embed_lower')
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2, name='embed_prefix') prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2, name='embed_prefix')
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size//2, name='embed_suffix') suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size//2, name='embed_suffix')
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size//2, name='embed_shape') shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size//2, name='embed_shape')
@ -300,7 +335,8 @@ def zero_init(model):
def doc2feats(cols=None): def doc2feats(cols=None):
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE] if cols is None:
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
def forward(docs, drop=0.): def forward(docs, drop=0.):
feats = [] feats = []
for doc in docs: for doc in docs:
@ -337,25 +373,22 @@ def fine_tune(embedding, combine=None):
vecs, bp_vecs = embedding.begin_update(docs, drop=drop) vecs, bp_vecs = embedding.begin_update(docs, drop=drop)
flat_tokvecs = embedding.ops.flatten(tokvecs) flat_tokvecs = embedding.ops.flatten(tokvecs)
flat_vecs = embedding.ops.flatten(vecs) flat_vecs = embedding.ops.flatten(vecs)
alpha = model.mix
minus = 1-model.mix
output = embedding.ops.unflatten( output = embedding.ops.unflatten(
(alpha * flat_tokvecs + minus * flat_vecs), lengths) (model.mix[0] * flat_vecs + model.mix[1] * flat_tokvecs),
lengths)
def fine_tune_bwd(d_output, sgd=None): def fine_tune_bwd(d_output, sgd=None):
bp_vecs(d_output, sgd=sgd)
flat_grad = model.ops.flatten(d_output) flat_grad = model.ops.flatten(d_output)
model.d_mix += flat_tokvecs.dot(flat_grad.T).sum() model.d_mix[1] += flat_tokvecs.dot(flat_grad.T).sum()
model.d_mix += 1-flat_vecs.dot(flat_grad.T).sum() model.d_mix[0] += flat_vecs.dot(flat_grad.T).sum()
if sgd is not None:
bp_vecs([d_o * minus for d_o in d_output], sgd=sgd) sgd(model._mem.weights, model._mem.gradient, key=model.id)
d_output = [d_o * alpha for d_o in d_output]
sgd(model._mem.weights, model._mem.gradient, key=model.id)
model.mix = model.ops.xp.minimum(model.mix, 1.0)
return d_output return d_output
return output, fine_tune_bwd return output, fine_tune_bwd
model = wrap(fine_tune_fwd, embedding) model = wrap(fine_tune_fwd, embedding)
model.mix = model._mem.add((model.id, 'mix'), (1,)) model.mix = model._mem.add((model.id, 'mix'), (2,))
model.mix.fill(0.0) model.mix.fill(1.)
model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix')) model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix'))
return model return model
@ -406,6 +439,27 @@ def preprocess_doc(docs, drop=0.):
vals = ops.allocate(keys.shape[0]) + 1 vals = ops.allocate(keys.shape[0]) + 1
return (keys, vals, lengths), None return (keys, vals, lengths), None
def getitem(i):
def getitem_fwd(X, drop=0.):
return X[i], None
return layerize(getitem_fwd)
def build_tagger_model(nr_class, token_vector_width, **cfg):
embed_size = util.env_opt('embed_size', 7500)
with Model.define_operators({'>>': chain, '+': add}):
# Input: (doc, tensor) tuples
private_tok2vec = Tok2Vec(token_vector_width, embed_size, preprocess=doc2feats())
model = (
fine_tune(private_tok2vec)
>> with_flatten(
Maxout(token_vector_width, token_vector_width)
>> Softmax(nr_class, token_vector_width)
)
)
model.nI = None
return model
def build_text_classifier(nr_class, width=64, **cfg): def build_text_classifier(nr_class, width=64, **cfg):
nr_vector = cfg.get('nr_vector', 200) nr_vector = cfg.get('nr_vector', 200)
@ -420,7 +474,7 @@ def build_text_classifier(nr_class, width=64, **cfg):
>> _flatten_add_lengths >> _flatten_add_lengths
>> with_getitem(0, >> with_getitem(0,
uniqued( uniqued(
(embed_lower | embed_prefix | embed_suffix | embed_shape) (embed_lower | embed_prefix | embed_suffix | embed_shape)
>> Maxout(width, width+(width//2)*3)) >> Maxout(width, width+(width//2)*3))
>> Residual(ExtractWindow(nW=1) >> ReLu(width, width*3)) >> Residual(ExtractWindow(nW=1) >> ReLu(width, width*3))
>> Residual(ExtractWindow(nW=1) >> ReLu(width, width*3)) >> Residual(ExtractWindow(nW=1) >> ReLu(width, width*3))
@ -441,7 +495,7 @@ def build_text_classifier(nr_class, width=64, **cfg):
>> zero_init(Affine(nr_class, nr_class*2, drop_factor=0.0)) >> zero_init(Affine(nr_class, nr_class*2, drop_factor=0.0))
>> logistic >> logistic
) )
model.lsuv = False model.lsuv = False
return model return model