Restore state of _ml.py

This commit is contained in:
Matthew Honnibal 2017-08-18 14:55:23 -05:00
parent 426f84937f
commit 85794c1167

View File

@ -5,6 +5,7 @@ from thinc.neural._classes.hash_embed import HashEmbed
from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural.util import get_array_module
import random
import cytoolz
from thinc.neural._classes.convolution import ExtractWindow
from thinc.neural._classes.static_vectors import StaticVectors
@ -26,6 +27,7 @@ from thinc.neural._classes.rnn import BiLSTM
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP
from .tokens.doc import Doc
from . import util
import numpy
import io
@ -56,6 +58,27 @@ def _logistic(X, drop=0.):
return Y, logistic_bwd
@layerize
def add_tuples(X, drop=0.):
"""Give inputs of sequence pairs, where each sequence is (vals, length),
sum the values, returning a single sequence.
If input is:
((vals1, length), (vals2, length)
Output is:
(vals1+vals2, length)
vals are a single tensor for the whole batch.
"""
(vals1, length1), (vals2, length2) = X
assert length1 == length2
def add_tuples_bwd(dY, sgd=None):
return (dY, dY)
return (vals1+vals2, length), add_tuples_bwd
def _zero_init(model):
def _zero_init_impl(self, X, y):
self.W.fill(0)
@ -64,6 +87,7 @@ def _zero_init(model):
model.W.fill(0.)
return model
@layerize
def _preprocess_doc(docs, drop=0.):
keys = [doc.to_array([LOWER]) for doc in docs]
@ -75,7 +99,6 @@ def _preprocess_doc(docs, drop=0.):
return (keys, vals, lengths), None
def _init_for_precomputed(W, ops):
if (W**2).sum() != 0.:
return
@ -83,6 +106,7 @@ def _init_for_precomputed(W, ops):
ops.xavier_uniform_init(reshaped)
W[:] = reshaped.reshape(W.shape)
@describe.on_data(_set_dimensions_if_needed)
@describe.attributes(
nI=Dimension("Input size"),
@ -187,10 +211,21 @@ class PrecomputableMaxouts(Model):
return Yfp, backward
def drop_layer(layer, factor=2.):
def drop_layer_fwd(X, drop=0.):
drop *= factor
mask = layer.ops.get_dropout_mask((1,), drop)
if mask is None or mask > 0:
return layer.begin_update(X, drop=drop)
else:
return X, lambda dX, sgd=None: dX
return wrap(drop_layer_fwd, layer)
def Tok2Vec(width, embed_size, preprocess=None):
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE]
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
norm = get_col(cols.index(NORM)) >> HashEmbed(width, embed_size, name='embed_lower')
norm = get_col(cols.index(NORM)) >> HashEmbed(width, embed_size, name='embed_lower')
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2, name='embed_prefix')
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size//2, name='embed_suffix')
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size//2, name='embed_shape')
@ -300,7 +335,8 @@ def zero_init(model):
def doc2feats(cols=None):
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE]
if cols is None:
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
def forward(docs, drop=0.):
feats = []
for doc in docs:
@ -337,25 +373,22 @@ def fine_tune(embedding, combine=None):
vecs, bp_vecs = embedding.begin_update(docs, drop=drop)
flat_tokvecs = embedding.ops.flatten(tokvecs)
flat_vecs = embedding.ops.flatten(vecs)
alpha = model.mix
minus = 1-model.mix
output = embedding.ops.unflatten(
(alpha * flat_tokvecs + minus * flat_vecs), lengths)
(model.mix[0] * flat_vecs + model.mix[1] * flat_tokvecs),
lengths)
def fine_tune_bwd(d_output, sgd=None):
bp_vecs(d_output, sgd=sgd)
flat_grad = model.ops.flatten(d_output)
model.d_mix += flat_tokvecs.dot(flat_grad.T).sum()
model.d_mix += 1-flat_vecs.dot(flat_grad.T).sum()
bp_vecs([d_o * minus for d_o in d_output], sgd=sgd)
d_output = [d_o * alpha for d_o in d_output]
sgd(model._mem.weights, model._mem.gradient, key=model.id)
model.mix = model.ops.xp.minimum(model.mix, 1.0)
model.d_mix[1] += flat_tokvecs.dot(flat_grad.T).sum()
model.d_mix[0] += flat_vecs.dot(flat_grad.T).sum()
if sgd is not None:
sgd(model._mem.weights, model._mem.gradient, key=model.id)
return d_output
return output, fine_tune_bwd
model = wrap(fine_tune_fwd, embedding)
model.mix = model._mem.add((model.id, 'mix'), (1,))
model.mix.fill(0.0)
model.mix = model._mem.add((model.id, 'mix'), (2,))
model.mix.fill(1.)
model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix'))
return model
@ -406,6 +439,27 @@ def preprocess_doc(docs, drop=0.):
vals = ops.allocate(keys.shape[0]) + 1
return (keys, vals, lengths), None
def getitem(i):
def getitem_fwd(X, drop=0.):
return X[i], None
return layerize(getitem_fwd)
def build_tagger_model(nr_class, token_vector_width, **cfg):
embed_size = util.env_opt('embed_size', 7500)
with Model.define_operators({'>>': chain, '+': add}):
# Input: (doc, tensor) tuples
private_tok2vec = Tok2Vec(token_vector_width, embed_size, preprocess=doc2feats())
model = (
fine_tune(private_tok2vec)
>> with_flatten(
Maxout(token_vector_width, token_vector_width)
>> Softmax(nr_class, token_vector_width)
)
)
model.nI = None
return model
def build_text_classifier(nr_class, width=64, **cfg):
nr_vector = cfg.get('nr_vector', 200)