Malay language support (#12602)

* add malay lang

* fix token len

* black format

* reformat conftest malay

* remove exceptions not exist in dbp

* format code
This commit is contained in:
Sani 2023-05-17 18:45:21 +08:00 committed by GitHub
parent 58779c24ef
commit 873c16a4df
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 3936 additions and 0 deletions

24
spacy/lang/ms/__init__.py Normal file
View File

@ -0,0 +1,24 @@
from .stop_words import STOP_WORDS
from .punctuation import TOKENIZER_SUFFIXES, TOKENIZER_PREFIXES, TOKENIZER_INFIXES
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .lex_attrs import LEX_ATTRS
from .syntax_iterators import SYNTAX_ITERATORS
from ...language import Language, BaseDefaults
class MalayDefaults(BaseDefaults):
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
prefixes = TOKENIZER_PREFIXES
suffixes = TOKENIZER_SUFFIXES
infixes = TOKENIZER_INFIXES
syntax_iterators = SYNTAX_ITERATORS
lex_attr_getters = LEX_ATTRS
stop_words = STOP_WORDS
class Malay(Language):
lang = "ms"
Defaults = MalayDefaults
__all__ = ["Malay"]

File diff suppressed because it is too large Load Diff

17
spacy/lang/ms/examples.py Normal file
View File

@ -0,0 +1,17 @@
"""
Example sentences to test spaCy and its language models.
>>> from spacy.lang.ms.examples import sentences
>>> docs = nlp.pipe(sentences)
"""
sentences = [
"Malaysia ialah sebuah negara yang terletak di Asia Tenggara.",
"Berapa banyak pelajar yang akan menghadiri majlis perpisahan sekolah?",
"Pengeluaran makanan berasal dari beberapa lokasi termasuk Cameron Highlands, Johor Bahru, dan Kuching.",
"Syarikat XYZ telah menghasilkan 20,000 unit produk baharu dalam setahun terakhir",
"Kuala Lumpur merupakan ibu negara Malaysia." "Kau berada di mana semalam?",
"Siapa yang akan memimpin projek itu?",
"Siapa perdana menteri Malaysia sekarang?",
]

View File

@ -0,0 +1,66 @@
import unicodedata
from .punctuation import LIST_CURRENCY
from ...attrs import IS_CURRENCY, LIKE_NUM
_num_words = [
"kosong",
"satu",
"dua",
"tiga",
"empat",
"lima",
"enam",
"tujuh",
"lapan",
"sembilan",
"sepuluh",
"sebelas",
"belas",
"puluh",
"ratus",
"ribu",
"juta",
"billion",
"trillion",
"kuadrilion",
"kuintilion",
"sekstilion",
"septilion",
"oktilion",
"nonilion",
"desilion",
]
def like_num(text):
if text.startswith(("+", "-", "±", "~")):
text = text[1:]
text = text.replace(",", "").replace(".", "")
if text.isdigit():
return True
if text.count("/") == 1:
num, denom = text.split("/")
if num.isdigit() and denom.isdigit():
return True
if text.lower() in _num_words:
return True
if text.count("-") == 1:
_, num = text.split("-")
if num.isdigit() or num in _num_words:
return True
return False
def is_currency(text):
if text in LIST_CURRENCY:
return True
for char in text:
if unicodedata.category(char) != "Sc":
return False
return True
LEX_ATTRS = {IS_CURRENCY: is_currency, LIKE_NUM: like_num}

View File

@ -0,0 +1,61 @@
from ..punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES, TOKENIZER_INFIXES
from ..char_classes import ALPHA, merge_chars, split_chars, _currency, _units
_units = (
_units + "s bit Gbps Mbps mbps Kbps kbps ƒ ppi px "
"Hz kHz MHz GHz mAh "
"ratus rb ribu ribuan "
"juta jt jutaan mill?iar million bil[l]?iun bilyun billion "
)
_currency = _currency + r" USD RM MYR Rp IDR RMB SGD S\$"
_months = (
"Januari Februari Mac April Mei Jun Julai Ogos September "
"Oktober November Disember Januari Februari Mac Mei Jun "
"Julai Ogos Oktober Disember Jan Feb Mac Jun Julai Ogos Sept "
"Okt Nov Dis"
)
UNITS = merge_chars(_units)
CURRENCY = merge_chars(_currency)
HTML_PREFIX = r"<(b|strong|i|em|p|span|div|br)\s?/>|<a([^>]+)>"
HTML_SUFFIX = r"</(b|strong|i|em|p|span|div|a)>"
MONTHS = merge_chars(_months)
LIST_CURRENCY = split_chars(_currency)
_prefixes = list(TOKENIZER_PREFIXES)
_prefixes.remove("#") # hashtag
_prefixes = _prefixes + LIST_CURRENCY + [HTML_PREFIX] + ["/", ""]
_suffixes = (
TOKENIZER_SUFFIXES
+ [r"\-[Nn]ya", "-[KkMm]u", "[—-]"]
+ [
# disabled: variable width currency variable
# r"(?<={c})(?:[0-9]+)".format(c=CURRENCY),
r"(?<=[0-9])(?:{u})".format(u=UNITS),
r"(?<=[0-9])%",
# disabled: variable width HTML_SUFFIX variable
# r"(?<=[0-9{a}]{h})(?:[\.,:-])".format(a=ALPHA, h=HTML_SUFFIX),
r"(?<=[0-9{a}])(?:{h})".format(a=ALPHA, h=HTML_SUFFIX),
]
)
_infixes = TOKENIZER_INFIXES + [
r"(?<=[0-9])[\\/](?=[0-9%-])",
r"(?<=[0-9])%(?=[{a}0-9/])".format(a=ALPHA),
# disabled: variable width units variable
# r"(?<={u})[\/-](?=[0-9])".format(u=UNITS),
# disabled: variable width months variable
# r"(?<={m})[\/-](?=[0-9])".format(m=MONTHS),
r'(?<=[0-9)][.,])"(?=[0-9])',
r'(?<=[{a})][.,\'])["—](?=[{a}])'.format(a=ALPHA),
r"(?<=[{a}])-(?=[0-9])".format(a=ALPHA),
r"(?<=[0-9])-(?=[{a}])".format(a=ALPHA),
r"(?<=[{a}])[\/-](?={c}|[{a}])".format(a=ALPHA, c=CURRENCY),
]
TOKENIZER_PREFIXES = _prefixes
TOKENIZER_SUFFIXES = _suffixes
TOKENIZER_INFIXES = _infixes

118
spacy/lang/ms/stop_words.py Normal file
View File

@ -0,0 +1,118 @@
STOP_WORDS = set(
"""
ada adalah adanya adapun agak agaknya agar akan akankah akhir akhiri akhirnya
aku akulah amat amatlah anda andalah antar antara antaranya apa apaan apabila
apakah apalagi apatah artinya asal asalkan atas atau ataukah ataupun awal
awalnya
bagai bagaikan bagaimana bagaimanakah bagaimanapun bagi bagian bahkan bahwa
bahwasanya baik bakal bakalan balik banyak bapak baru bawah beberapa begini
beginian beginikah beginilah begitu begitukah begitulah begitupun bekerja
belakang belakangan belum belumlah benar benarkah benarlah berada berakhir
berakhirlah berakhirnya berapa berapakah berapalah berapapun berarti berawal
berbagai berdatangan beri berikan berikut berikutnya berjumlah berkali-kali
berkata berkehendak berkeinginan berkenaan berlainan berlalu berlangsung
berlebihan bermacam bermacam-macam bermaksud bermula bersama bersama-sama
bersiap bersiap-siap bertanya bertanya-tanya berturut berturut-turut bertutur
berujar berupa besar betul betulkah biasa biasanya bila bilakah bisa bisakah
boleh bolehkah bolehlah buat bukan bukankah bukanlah bukannya bulan bung
cara caranya cukup cukupkah cukuplah cuma
dahulu dalam dan dapat dari daripada datang dekat demi demikian demikianlah
dengan depan di dia diakhiri diakhirinya dialah diantara diantaranya diberi
diberikan diberikannya dibuat dibuatnya didapat didatangkan digunakan
diibaratkan diibaratkannya diingat diingatkan diinginkan dijawab dijelaskan
dijelaskannya dikarenakan dikatakan dikatakannya dikerjakan diketahui
diketahuinya dikira dilakukan dilalui dilihat dimaksud dimaksudkan
dimaksudkannya dimaksudnya diminta dimintai dimisalkan dimulai dimulailah
dimulainya dimungkinkan dini dipastikan diperbuat diperbuatnya dipergunakan
diperkirakan diperlihatkan diperlukan diperlukannya dipersoalkan dipertanyakan
dipunyai diri dirinya disampaikan disebut disebutkan disebutkannya disini
disinilah ditambahkan ditandaskan ditanya ditanyai ditanyakan ditegaskan
ditujukan ditunjuk ditunjuki ditunjukkan ditunjukkannya ditunjuknya dituturkan
dituturkannya diucapkan diucapkannya diungkapkan dong dua dulu
empat enggak enggaknya entah entahlah
guna gunakan
hal hampir hanya hanyalah hari harus haruslah harusnya hendak hendaklah
hendaknya hingga
ia ialah ibarat ibaratkan ibaratnya ibu ikut ingat ingat-ingat ingin inginkah
inginkan ini inikah inilah itu itukah itulah
jadi jadilah jadinya jangan jangankan janganlah jauh jawab jawaban jawabnya
jelas jelaskan jelaslah jelasnya jika jikalau juga jumlah jumlahnya justru
kala kalau kalaulah kalaupun kalian kami kamilah kamu kamulah kan kapan
kapankah kapanpun karena karenanya kasus kata katakan katakanlah katanya ke
keadaan kebetulan kecil kedua keduanya keinginan kelamaan kelihatan
kelihatannya kelima keluar kembali kemudian kemungkinan kemungkinannya kenapa
kepada kepadanya kesampaian keseluruhan keseluruhannya keterlaluan ketika
khususnya kini kinilah kira kira-kira kiranya kita kitalah kok kurang
lagi lagian lah lain lainnya lalu lama lamanya lanjut lanjutnya lebih lewat
lima luar
macam maka makanya makin malah malahan mampu mampukah mana manakala manalagi
masa masalah masalahnya masih masihkah masing masing-masing mau maupun
melainkan melakukan melalui melihat melihatnya memang memastikan memberi
memberikan membuat memerlukan memihak meminta memintakan memisalkan memperbuat
mempergunakan memperkirakan memperlihatkan mempersiapkan mempersoalkan
mempertanyakan mempunyai memulai memungkinkan menaiki menambahkan menandaskan
menanti menanti-nanti menantikan menanya menanyai menanyakan mendapat
mendapatkan mendatang mendatangi mendatangkan menegaskan mengakhiri mengapa
mengatakan mengatakannya mengenai mengerjakan mengetahui menggunakan
menghendaki mengibaratkan mengibaratkannya mengingat mengingatkan menginginkan
mengira mengucapkan mengucapkannya mengungkapkan menjadi menjawab menjelaskan
menuju menunjuk menunjuki menunjukkan menunjuknya menurut menuturkan
menyampaikan menyangkut menyatakan menyebutkan menyeluruh menyiapkan merasa
mereka merekalah merupakan meski meskipun meyakini meyakinkan minta mirip
misal misalkan misalnya mula mulai mulailah mulanya mungkin mungkinkah
nah naik namun nanti nantinya nyaris nyatanya
oleh olehnya
pada padahal padanya pak paling panjang pantas para pasti pastilah penting
pentingnya per percuma perlu perlukah perlunya pernah persoalan pertama
pertama-tama pertanyaan pertanyakan pihak pihaknya pukul pula pun punya
rasa rasanya rata rupanya
saat saatnya saja sajalah saling sama sama-sama sambil sampai sampai-sampai
sampaikan sana sangat sangatlah satu saya sayalah se sebab sebabnya sebagai
sebagaimana sebagainya sebagian sebaik sebaik-baiknya sebaiknya sebaliknya
sebanyak sebegini sebegitu sebelum sebelumnya sebenarnya seberapa sebesar
sebetulnya sebisanya sebuah sebut sebutlah sebutnya secara secukupnya sedang
sedangkan sedemikian sedikit sedikitnya seenaknya segala segalanya segera
seharusnya sehingga seingat sejak sejauh sejenak sejumlah sekadar sekadarnya
sekali sekali-kali sekalian sekaligus sekalipun sekarang sekarang sekecil
seketika sekiranya sekitar sekitarnya sekurang-kurangnya sekurangnya sela
selain selaku selalu selama selama-lamanya selamanya selanjutnya seluruh
seluruhnya semacam semakin semampu semampunya semasa semasih semata semata-mata
semaunya sementara semisal semisalnya sempat semua semuanya semula sendiri
sendirian sendirinya seolah seolah-olah seorang sepanjang sepantasnya
sepantasnyalah seperlunya seperti sepertinya sepihak sering seringnya serta
serupa sesaat sesama sesampai sesegera sesekali seseorang sesuatu sesuatunya
sesudah sesudahnya setelah setempat setengah seterusnya setiap setiba setibanya
setidak-tidaknya setidaknya setinggi seusai sewaktu siap siapa siapakah
siapapun sini sinilah soal soalnya suatu sudah sudahkah sudahlah supaya
tadi tadinya tahu tahun tak tambah tambahnya tampak tampaknya tandas tandasnya
tanpa tanya tanyakan tanyanya tapi tegas tegasnya telah tempat tengah tentang
tentu tentulah tentunya tepat terakhir terasa terbanyak terdahulu terdapat
terdiri terhadap terhadapnya teringat teringat-ingat terjadi terjadilah
terjadinya terkira terlalu terlebih terlihat termasuk ternyata tersampaikan
tersebut tersebutlah tertentu tertuju terus terutama tetap tetapi tiap tiba
tiba-tiba tidak tidakkah tidaklah tiga tinggi toh tunjuk turut tutur tuturnya
ucap ucapnya ujar ujarnya umum umumnya ungkap ungkapnya untuk usah usai
waduh wah wahai waktu waktunya walau walaupun wong
yaitu yakin yakni yang
""".split()
)

View File

@ -0,0 +1,41 @@
from typing import Union, Iterator, Tuple
from ...symbols import NOUN, PROPN, PRON
from ...errors import Errors
from ...tokens import Doc, Span
def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Tuple[int, int, int]]:
"""
Detect base noun phrases from a dependency parse. Works on both Doc and Span.
"""
# fmt: off
labels = ["nsubj", "nsubj:pass", "obj", "iobj", "ROOT", "appos", "nmod", "nmod:poss"]
# fmt: on
doc = doclike.doc # Ensure works on both Doc and Span.
if not doc.has_annotation("DEP"):
raise ValueError(Errors.E029)
np_deps = [doc.vocab.strings[label] for label in labels]
conj = doc.vocab.strings.add("conj")
np_label = doc.vocab.strings.add("NP")
prev_end = -1
for i, word in enumerate(doclike):
if word.pos not in (NOUN, PROPN, PRON):
continue
# Prevent nested chunks from being produced
if word.left_edge.i <= prev_end:
continue
if word.dep in np_deps:
prev_end = word.right_edge.i
yield word.left_edge.i, word.right_edge.i + 1, np_label
elif word.dep == conj:
head = word.head
while head.dep == conj and head.head.i < head.i:
head = head.head
# If the head is an NP, and we're coordinated to it, we're an NP
if head.dep in np_deps:
prev_end = word.right_edge.i
yield word.left_edge.i, word.right_edge.i + 1, np_label
SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}

File diff suppressed because it is too large Load Diff

View File

@ -291,6 +291,11 @@ def ml_tokenizer():
return get_lang_class("ml")().tokenizer
@pytest.fixture(scope="session")
def ms_tokenizer():
return get_lang_class("ms")().tokenizer
@pytest.fixture(scope="session")
def nb_tokenizer():
return get_lang_class("nb")().tokenizer

View File

View File

@ -0,0 +1,8 @@
import pytest
def test_noun_chunks_is_parsed_ms(ms_tokenizer):
"""Test that noun_chunks raises Value Error for 'ms' language if Doc is not parsed."""
doc = ms_tokenizer("sebelas")
with pytest.raises(ValueError):
list(doc.noun_chunks)

View File

@ -0,0 +1,112 @@
import pytest
@pytest.mark.parametrize("text", ["(Ma'arif)"])
def test_ms_tokenizer_splits_no_special(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 3
@pytest.mark.parametrize("text", ["Ma'arif"])
def test_ms_tokenizer_splits_no_punct(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 1
@pytest.mark.parametrize("text", ["(Ma'arif"])
def test_ms_tokenizer_splits_prefix_punct(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 2
@pytest.mark.parametrize("text", ["Ma'arif)"])
def test_ms_tokenizer_splits_suffix_punct(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 2
@pytest.mark.parametrize("text", ["(Ma'arif)"])
def test_ms_tokenizer_splits_even_wrap(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 3
@pytest.mark.parametrize("text", ["(Ma'arif?)"])
def test_tokenizer_splits_uneven_wrap(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 4
@pytest.mark.parametrize("text,length", [("S.Kom.", 1), ("SKom.", 2), ("(S.Kom.", 2)])
def test_ms_tokenizer_splits_prefix_interact(id_tokenizer, text, length):
tokens = id_tokenizer(text)
assert len(tokens) == length
@pytest.mark.parametrize("text", ["S.Kom.)"])
def test_ms_tokenizer_splits_suffix_interact(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 2
@pytest.mark.parametrize("text", ["(S.Kom.)"])
def test_ms_tokenizer_splits_even_wrap_interact(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 3
@pytest.mark.parametrize("text", ["(S.Kom.?)"])
def test_ms_tokenizer_splits_uneven_wrap_interact(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 4
@pytest.mark.parametrize(
"text,length",
[("kerana", 1), ("Mahathir-Anwar", 3), ("Tun Dr. Ismail-Abdul Rahman", 6)],
)
def test_my_tokenizer_splits_hyphens(ms_tokenizer, text, length):
tokens = ms_tokenizer(text)
assert len(tokens) == length
@pytest.mark.parametrize("text", ["0.1-13.5", "0.0-0.1", "103.27-300"])
def test_ms_tokenizer_splits_numeric_range(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 3
@pytest.mark.parametrize("text", ["ini.Sani", "Halo.Malaysia"])
def test_ms_tokenizer_splits_period_infix(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 3
@pytest.mark.parametrize("text", ["Halo,Malaysia", "satu,dua"])
def test_ms_tokenizer_splits_comma_infix(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 3
assert tokens[0].text == text.split(",")[0]
assert tokens[1].text == ","
assert tokens[2].text == text.split(",")[1]
@pytest.mark.parametrize("text", ["halo...Malaysia", "dia...pergi"])
def test_ms_tokenizer_splits_ellipsis_infix(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 3
def test_ms_tokenizer_splits_double_hyphen_infix(id_tokenizer):
tokens = id_tokenizer("Arsene Wenger--pengurus Arsenal--mengadakan sidang media.")
assert len(tokens) == 10
assert tokens[0].text == "Arsene"
assert tokens[1].text == "Wenger"
assert tokens[2].text == "--"
assert tokens[3].text == "pengurus"
assert tokens[4].text == "Arsenal"
assert tokens[5].text == "--"
assert tokens[6].text == "mengadakan"
assert tokens[7].text == "sidang"
assert tokens[8].text == "media"
assert tokens[9].text == "."

View File

@ -0,0 +1,8 @@
import pytest
from spacy.lang.ms.lex_attrs import like_num
@pytest.mark.parametrize("word", ["sebelas"])
def test_ms_lex_attrs_capitals(word):
assert like_num(word)
assert like_num(word.upper())