mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
fix for context encoder optimizer
This commit is contained in:
parent
3420cbe496
commit
8840d4b1b3
|
@ -73,11 +73,11 @@ def run_pipeline():
|
|||
measure_performance = True
|
||||
|
||||
# test the EL pipe on a simple example
|
||||
to_test_pipeline = False
|
||||
to_test_pipeline = True
|
||||
|
||||
# write the NLP object, read back in and test again
|
||||
to_write_nlp = False
|
||||
to_read_nlp = False
|
||||
to_write_nlp = True
|
||||
to_read_nlp = True
|
||||
test_from_file = False
|
||||
|
||||
# STEP 1 : create prior probabilities from WP (run only once)
|
||||
|
@ -154,8 +154,8 @@ def run_pipeline():
|
|||
optimizer.L2 = L2
|
||||
|
||||
# define the size (nr of entities) of training and dev set
|
||||
train_limit = 50000
|
||||
dev_limit = 50000
|
||||
train_limit = 5
|
||||
dev_limit = 5
|
||||
|
||||
train_data = training_set_creator.read_training(nlp=nlp_2,
|
||||
training_dir=TRAINING_DIR,
|
||||
|
@ -250,7 +250,8 @@ def run_pipeline():
|
|||
print("STEP 9: testing NLP IO", datetime.datetime.now())
|
||||
print()
|
||||
print("writing to", NLP_2_DIR)
|
||||
nlp_2.to_disk(NLP_2_DIR)
|
||||
with el_pipe.model.use_params(optimizer.averages) and el_pipe.model.tok2vec.use_params(el_pipe.sgd_context.averages):
|
||||
nlp_2.to_disk(NLP_2_DIR)
|
||||
print()
|
||||
|
||||
# verify that the IO has gone correctly
|
||||
|
|
|
@ -1082,12 +1082,8 @@ class EntityLinker(Pipe):
|
|||
def __init__(self, **cfg):
|
||||
self.model = True
|
||||
self.kb = None
|
||||
self.sgd_context = None
|
||||
self.cfg = dict(cfg)
|
||||
self.context_weight = cfg.get("context_weight", 1)
|
||||
self.prior_weight = cfg.get("prior_weight", 1)
|
||||
self.context_width = cfg.get("context_width")
|
||||
self.type_to_int = cfg.get("type_to_int", dict())
|
||||
self.sgd_context = None
|
||||
|
||||
def set_kb(self, kb):
|
||||
self.kb = kb
|
||||
|
@ -1112,6 +1108,7 @@ class EntityLinker(Pipe):
|
|||
|
||||
if sgd is None:
|
||||
sgd = self.create_optimizer()
|
||||
|
||||
return sgd
|
||||
|
||||
def update(self, docs, golds, state=None, drop=0.0, sgd=None, losses=None):
|
||||
|
@ -1138,6 +1135,8 @@ class EntityLinker(Pipe):
|
|||
priors = []
|
||||
type_vectors = []
|
||||
|
||||
type_to_int = self.cfg.get("type_to_int", dict())
|
||||
|
||||
for doc, gold in zip(docs, golds):
|
||||
ents_by_offset = dict()
|
||||
for ent in doc.ents:
|
||||
|
@ -1148,9 +1147,9 @@ class EntityLinker(Pipe):
|
|||
|
||||
gold_ent = ents_by_offset[str(ent.start_char) + "_" + str(ent.end_char)]
|
||||
assert gold_ent is not None
|
||||
type_vector = [0 for i in range(len(self.type_to_int))]
|
||||
if len(self.type_to_int) > 0:
|
||||
type_vector[self.type_to_int[gold_ent.label_]] = 1
|
||||
type_vector = [0 for i in range(len(type_to_int))]
|
||||
if len(type_to_int) > 0:
|
||||
type_vector[type_to_int[gold_ent.label_]] = 1
|
||||
|
||||
candidates = self.kb.get_candidates(mention)
|
||||
random.shuffle(candidates)
|
||||
|
@ -1162,7 +1161,7 @@ class EntityLinker(Pipe):
|
|||
context_docs.append(doc)
|
||||
type_vectors.append(type_vector)
|
||||
|
||||
if self.prior_weight > 0:
|
||||
if self.cfg.get("prior_weight", 1) > 0:
|
||||
priors.append([c.prior_prob])
|
||||
else:
|
||||
priors.append([0])
|
||||
|
@ -1187,7 +1186,7 @@ class EntityLinker(Pipe):
|
|||
loss, d_scores = self.get_loss(prediction=pred, golds=cats, docs=None)
|
||||
mention_gradient = bp_mention(d_scores, sgd=sgd)
|
||||
|
||||
context_gradients = [list(x[0:self.context_width]) for x in mention_gradient]
|
||||
context_gradients = [list(x[0:self.cfg.get("context_width")]) for x in mention_gradient]
|
||||
bp_context(self.model.ops.asarray(context_gradients, dtype="float32"), sgd=self.sgd_context)
|
||||
|
||||
if losses is not None:
|
||||
|
@ -1235,13 +1234,15 @@ class EntityLinker(Pipe):
|
|||
context_encodings = self.model.tok2vec(docs)
|
||||
xp = get_array_module(context_encodings)
|
||||
|
||||
type_to_int = self.cfg.get("type_to_int", dict())
|
||||
|
||||
for i, doc in enumerate(docs):
|
||||
if len(doc) > 0:
|
||||
context_encoding = context_encodings[i]
|
||||
for ent in doc.ents:
|
||||
type_vector = [0 for i in range(len(self.type_to_int))]
|
||||
if len(self.type_to_int) > 0:
|
||||
type_vector[self.type_to_int[ent.label_]] = 1
|
||||
type_vector = [0 for i in range(len(type_to_int))]
|
||||
if len(type_to_int) > 0:
|
||||
type_vector[type_to_int[ent.label_]] = 1
|
||||
|
||||
candidates = self.kb.get_candidates(ent.text)
|
||||
if candidates:
|
||||
|
@ -1249,10 +1250,10 @@ class EntityLinker(Pipe):
|
|||
|
||||
# this will set the prior probabilities to 0 (just like in training) if their weight is 0
|
||||
prior_probs = xp.asarray([[c.prior_prob] for c in candidates])
|
||||
prior_probs *= self.prior_weight
|
||||
prior_probs *= self.cfg.get("prior_weight", 1)
|
||||
scores = prior_probs
|
||||
|
||||
if self.context_weight > 0:
|
||||
if self.cfg.get("context_weight", 1) > 0:
|
||||
entity_encodings = xp.asarray([c.entity_vector for c in candidates])
|
||||
assert len(entity_encodings) == len(prior_probs)
|
||||
mention_encodings = [list(context_encoding) + list(entity_encodings[i])
|
||||
|
|
Loading…
Reference in New Issue
Block a user