mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Update docstrings and remove deprecated load classmethod
This commit is contained in:
parent
c9f04f3cd0
commit
885e82c9b0
|
@ -1,7 +1,6 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import ujson
|
||||
from collections import defaultdict
|
||||
|
||||
from cymem.cymem cimport Pool
|
||||
|
@ -15,7 +14,6 @@ from .tokens.doc cimport Doc
|
|||
from .attrs cimport TAG
|
||||
from .gold cimport GoldParse
|
||||
from .attrs cimport *
|
||||
from . import util
|
||||
|
||||
|
||||
cpdef enum:
|
||||
|
@ -108,55 +106,15 @@ cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
|
|||
|
||||
|
||||
cdef class Tagger:
|
||||
"""
|
||||
Annotate part-of-speech tags on Doc objects.
|
||||
"""
|
||||
@classmethod
|
||||
def load(cls, path, vocab, require=False):
|
||||
"""
|
||||
Load the statistical model from the supplied path.
|
||||
|
||||
Arguments:
|
||||
path (Path):
|
||||
The path to load from.
|
||||
vocab (Vocab):
|
||||
The vocabulary. Must be shared by the documents to be processed.
|
||||
require (bool):
|
||||
Whether to raise an error if the files are not found.
|
||||
Returns (Tagger):
|
||||
The newly created object.
|
||||
"""
|
||||
# TODO: Change this to expect config.json when we don't have to
|
||||
# support old data.
|
||||
path = util.ensure_path(path)
|
||||
if (path / 'templates.json').exists():
|
||||
with (path / 'templates.json').open('r', encoding='utf8') as file_:
|
||||
templates = ujson.load(file_)
|
||||
elif require:
|
||||
raise IOError(
|
||||
"Required file %s/templates.json not found when loading Tagger" % str(path))
|
||||
else:
|
||||
templates = cls.feature_templates
|
||||
self = cls(vocab, model=None, feature_templates=templates)
|
||||
|
||||
if (path / 'model').exists():
|
||||
self.model.load(str(path / 'model'))
|
||||
elif require:
|
||||
raise IOError(
|
||||
"Required file %s/model not found when loading Tagger" % str(path))
|
||||
return self
|
||||
"""Annotate part-of-speech tags on Doc objects."""
|
||||
|
||||
def __init__(self, Vocab vocab, TaggerModel model=None, **cfg):
|
||||
"""
|
||||
Create a Tagger.
|
||||
"""Create a Tagger.
|
||||
|
||||
Arguments:
|
||||
vocab (Vocab):
|
||||
The vocabulary object. Must be shared with documents to be processed.
|
||||
model (thinc.linear.AveragedPerceptron):
|
||||
The statistical model.
|
||||
Returns (Tagger):
|
||||
The newly constructed object.
|
||||
vocab (Vocab): The vocabulary object. Must be shared with documents to
|
||||
be processed.
|
||||
model (thinc.linear.AveragedPerceptron): The statistical model.
|
||||
RETURNS (Tagger): The newly constructed object.
|
||||
"""
|
||||
if model is None:
|
||||
model = TaggerModel(cfg.get('features', self.feature_templates),
|
||||
|
@ -186,13 +144,9 @@ cdef class Tagger:
|
|||
tokens._py_tokens = [None] * tokens.length
|
||||
|
||||
def __call__(self, Doc tokens):
|
||||
"""
|
||||
Apply the tagger, setting the POS tags onto the Doc object.
|
||||
"""Apply the tagger, setting the POS tags onto the Doc object.
|
||||
|
||||
Arguments:
|
||||
doc (Doc): The tokens to be tagged.
|
||||
Returns:
|
||||
None
|
||||
doc (Doc): The tokens to be tagged.
|
||||
"""
|
||||
if tokens.length == 0:
|
||||
return 0
|
||||
|
@ -215,34 +169,25 @@ cdef class Tagger:
|
|||
tokens._py_tokens = [None] * tokens.length
|
||||
|
||||
def pipe(self, stream, batch_size=1000, n_threads=2):
|
||||
"""
|
||||
Tag a stream of documents.
|
||||
"""Tag a stream of documents.
|
||||
|
||||
Arguments:
|
||||
stream: The sequence of documents to tag.
|
||||
batch_size (int):
|
||||
The number of documents to accumulate into a working set.
|
||||
n_threads (int):
|
||||
The number of threads with which to work on the buffer in parallel,
|
||||
if the Matcher implementation supports multi-threading.
|
||||
Yields:
|
||||
Doc Documents, in order.
|
||||
stream: The sequence of documents to tag.
|
||||
batch_size (int): The number of documents to accumulate into a working set.
|
||||
n_threads (int): The number of threads with which to work on the buffer
|
||||
in parallel, if the Matcher implementation supports multi-threading.
|
||||
YIELDS (Doc): Documents, in order.
|
||||
"""
|
||||
for doc in stream:
|
||||
self(doc)
|
||||
yield doc
|
||||
|
||||
def update(self, Doc tokens, GoldParse gold, itn=0):
|
||||
"""
|
||||
Update the statistical model, with tags supplied for the given document.
|
||||
"""Update the statistical model, with tags supplied for the given document.
|
||||
|
||||
Arguments:
|
||||
doc (Doc):
|
||||
The document to update on.
|
||||
gold (GoldParse):
|
||||
Manager for the gold-standard tags.
|
||||
Returns (int):
|
||||
Number of tags correct.
|
||||
doc (Doc): The document to update on.
|
||||
gold (GoldParse): Manager for the gold-standard tags.
|
||||
RETURNS (int): Number of tags predicted correctly.
|
||||
"""
|
||||
gold_tag_strs = gold.tags
|
||||
assert len(tokens) == len(gold_tag_strs)
|
||||
|
|
Loading…
Reference in New Issue
Block a user