* Hack on sense tagger

This commit is contained in:
Matthew Honnibal 2015-07-04 12:26:16 +02:00
parent 389dcd3fb2
commit 893b5fd42c

View File

@ -1,19 +1,25 @@
from libc.string cimport memcpy
from cymem.cymem cimport Pool
from thinc.learner cimport LinearModel
from thinc.features cimport Extractor, Feature
from thinc.typedefs cimport atom_t, weight_t, feat_t
from .typedefs cimport flags_t
from .structs cimport TokenC
from .strings cimport StringStore
from .tokens cimport Tokens
from .senses cimport N_SENSES, encode_sense_strs
from .senses cimport N_Tops, J_ppl, V_body
from .senses cimport NO_SENSE, N_Tops, J_ppl, V_body
from .gold cimport GoldParse
from .parts_of_speech cimport NOUN, VERB, N_UNIV_TAGS
from . cimport parts_of_speech
from thinc.learner cimport LinearModel
from thinc.features cimport Extractor
from thinc.typedefs cimport atom_t, weight_t, feat_t
from os import path
@ -48,6 +54,9 @@ cdef enum:
N2c
N2c6
N2c4
P1s
P2s
CONTEXT_SIZE
@ -77,14 +86,11 @@ unigrams = (
(P1c,),
(N0p,),
(N0W, N0p),
(N0c, N0p),
(N0c6, N0p),
(N0c4, N0p),
(N0c,),
(N0W,),
(N0p,),
(N0W, N0p),
(N0c, N0p),
(N0c6, N0p),
(N0c4, N0p),
@ -117,6 +123,12 @@ unigrams = (
(N2c6, N2p),
(N2c4, N2p),
(N2c,),
(P1s,),
(P2s,),
(P1s, P2s,),
(P1s, N0p),
(P1s, P2s, N0c),
)
@ -165,6 +177,44 @@ cdef int fill_context(atom_t* ctxt, const TokenC* token) except -1:
fill_token(&ctxt[N1W], token + 1)
fill_token(&ctxt[N2W], token + 2)
ctxt[P1s] = (token - 1).sense
ctxt[P2s] = (token - 2).sense
cdef class FeatureVector:
cdef Pool mem
cdef Feature* c
cdef list extractors
cdef int length
cdef int _max_length
def __init__(self, length=100):
self.mem = Pool()
self.c = <Feature*>self.mem.alloc(length, sizeof(Feature))
self.length = 0
self._max_length = length
def __len__(self):
return self.length
cpdef int add(self, feat_t key, weight_t value) except -1:
if self.length == self._max_length:
self._max_length *= 2
self.c = <Feature*>self.mem.realloc(self.c, self._max_length * sizeof(Feature))
self.c[self.length] = Feature(i=0, key=key, value=value)
self.length += 1
cdef int extend(self, const Feature* new_feats, int n_feats) except -1:
new_length = self.length + n_feats
if new_length >= self._max_length:
self._max_length = 2 * new_length
self.c = <Feature*>self.mem.realloc(self.c, new_length * sizeof(Feature))
memcpy(&self.c[self.length], new_feats, n_feats * sizeof(Feature))
self.length += n_feats
def clear(self):
self.length = 0
cdef class SenseTagger:
@ -201,25 +251,34 @@ cdef class SenseTagger:
self.pos_senses[<int>parts_of_speech.PUNCT] = 0
self.pos_senses[<int>parts_of_speech.EOL] = 0
cdef flags_t sense = 0
for _sense in range(N_Tops, V_body):
for sense in range(N_Tops, V_body):
self.pos_senses[<int>parts_of_speech.NOUN] |= 1 << sense
for _sense in range(V_body, J_ppl):
for sense in range(V_body, J_ppl):
self.pos_senses[<int>parts_of_speech.VERB] |= 1 << sense
def __call__(self, Tokens tokens):
cdef atom_t[CONTEXT_SIZE] context
cdef atom_t[CONTEXT_SIZE] local_context
cdef int i, guess, n_feats
cdef flags_t valid_senses = 0
cdef TokenC* token
cdef FeatureVector features = FeatureVector(100)
for i in range(tokens.length):
token = &tokens.data[i]
if token.pos in (NOUN, VERB):
fill_context(context, token)
feats = self.extractor.get_feats(context, &n_feats)
scores = self.model.get_scores(feats, n_feats)
tokens.data[i].sense = self.best_in_set(scores, self.pos_senses[<int>token.pos])
if token.lex.senses == 1:
continue
assert not (token.lex.senses & (1 << NO_SENSE)), (tokens[i].orth_, token.lex.senses)
assert not (self.pos_senses[<int>token.pos] & (1 << NO_SENSE))
valid_senses = token.lex.senses & self.pos_senses[<int>token.pos]
assert not (valid_senses & (1 << NO_SENSE))
if valid_senses:
fill_context(local_context, token)
local_feats = self.extractor.get_feats(local_context, &n_feats)
features.extend(local_feats, n_feats)
scores = self.model.get_scores(features.c, features.length)
tokens.data[i].sense = self.best_in_set(scores, valid_senses)
features.clear()
def train(self, Tokens tokens, GoldParse gold):
cdef int i, j
@ -228,8 +287,10 @@ cdef class SenseTagger:
token = &tokens.data[i]
if ssenses:
gold.c.ssenses[i] = encode_sense_strs(ssenses)
else:
elif token.lex.senses >= 2 and token.pos in (NOUN, VERB):
gold.c.ssenses[i] = token.lex.senses & self.pos_senses[<int>token.pos]
else:
gold.c.ssenses[i] = 0
cdef atom_t[CONTEXT_SIZE] context
cdef int n_feats
@ -244,7 +305,7 @@ cdef class SenseTagger:
fill_context(context, token)
feats = self.extractor.get_feats(context, &n_feats)
scores = self.model.get_scores(feats, n_feats)
token.sense = self.best_in_set(scores, token.lex.senses)
token.sense = self.best_in_set(scores, self.pos_senses[<int>token.pos])
best = self.best_in_set(scores, gold.c.ssenses[i])
guess_counts = {}
gold_counts = {}