mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-14 11:36:24 +03:00
* Wire eta and mu parameters up for neural net
This commit is contained in:
parent
fc34e1b6e4
commit
894cbef8ba
|
@ -10,12 +10,13 @@ from os import path
|
||||||
|
|
||||||
cdef class TheanoModel(Model):
|
cdef class TheanoModel(Model):
|
||||||
def __init__(self, n_classes, input_spec, train_func, predict_func, model_loc=None,
|
def __init__(self, n_classes, input_spec, train_func, predict_func, model_loc=None,
|
||||||
|
eta=0.001, mu=0.9,
|
||||||
debug=None):
|
debug=None):
|
||||||
if model_loc is not None and path.isdir(model_loc):
|
if model_loc is not None and path.isdir(model_loc):
|
||||||
model_loc = path.join(model_loc, 'model')
|
model_loc = path.join(model_loc, 'model')
|
||||||
|
|
||||||
self.eta = 0.001
|
self.eta = eta
|
||||||
self.mu = 0.9
|
self.mu = mu
|
||||||
self.t = 1
|
self.t = 1
|
||||||
initializer = lambda: 0.2 * numpy.random.uniform(-1.0, 1.0)
|
initializer = lambda: 0.2 * numpy.random.uniform(-1.0, 1.0)
|
||||||
self.input_layer = InputLayer(input_spec, initializer)
|
self.input_layer = InputLayer(input_spec, initializer)
|
||||||
|
@ -28,22 +29,24 @@ cdef class TheanoModel(Model):
|
||||||
self.model_loc = model_loc
|
self.model_loc = model_loc
|
||||||
|
|
||||||
def predict(self, Example eg):
|
def predict(self, Example eg):
|
||||||
self.input_layer.fill(eg.embeddings, eg.atoms, use_avg=True)
|
self.input_layer.fill(eg.embeddings, eg.atoms, use_avg=False)
|
||||||
theano_scores = self.predict_func(eg.embeddings)[0]
|
theano_scores = self.predict_func(eg.embeddings)[0]
|
||||||
cdef int i
|
cdef int i
|
||||||
for i in range(self.n_classes):
|
for i in range(self.n_classes):
|
||||||
eg.scores[i] = theano_scores[i]
|
eg.c.scores[i] = theano_scores[i]
|
||||||
eg.guess = arg_max_if_true(eg.c.scores, eg.c.is_valid, self.n_classes)
|
eg.c.guess = arg_max_if_true(eg.c.scores, eg.c.is_valid, self.n_classes)
|
||||||
|
|
||||||
def train(self, Example eg):
|
def train(self, Example eg):
|
||||||
self.input_layer.fill(eg.embeddings, eg.atoms, use_avg=False)
|
self.input_layer.fill(eg.embeddings, eg.atoms, use_avg=False)
|
||||||
theano_scores, update, y = self.train_func(eg.embeddings, eg.costs, self.eta)
|
theano_scores, update, y, loss = self.train_func(eg.embeddings, eg.costs,
|
||||||
|
self.eta, self.mu)
|
||||||
self.input_layer.update(update, eg.atoms, self.t, self.eta, self.mu)
|
self.input_layer.update(update, eg.atoms, self.t, self.eta, self.mu)
|
||||||
for i in range(self.n_classes):
|
for i in range(self.n_classes):
|
||||||
eg.c.scores[i] = theano_scores[i]
|
eg.c.scores[i] = theano_scores[i]
|
||||||
eg.guess = arg_max_if_true(eg.c.scores, eg.c.is_valid, self.n_classes)
|
eg.c.guess = arg_max_if_true(eg.c.scores, eg.c.is_valid, self.n_classes)
|
||||||
eg.best = arg_max_if_zero(eg.c.scores, eg.c.costs, self.n_classes)
|
eg.c.best = arg_max_if_zero(eg.c.scores, eg.c.costs, self.n_classes)
|
||||||
eg.cost = eg.c.costs[eg.guess]
|
eg.c.cost = eg.c.costs[eg.c.guess]
|
||||||
|
eg.c.loss = loss
|
||||||
self.t += 1
|
self.t += 1
|
||||||
|
|
||||||
def end_training(self):
|
def end_training(self):
|
||||||
|
|
Loading…
Reference in New Issue
Block a user