mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Ensure tagger and NER are trained, even if non-projective problem
This commit is contained in:
		
							parent
							
								
									f69fe6a635
								
							
						
					
					
						commit
						895060e774
					
				| 
						 | 
					@ -84,15 +84,13 @@ def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic', seed=0
 | 
				
			||||||
                    loss += nlp.parser.train(tokens, gold)
 | 
					                    loss += nlp.parser.train(tokens, gold)
 | 
				
			||||||
                except AssertionError:
 | 
					                except AssertionError:
 | 
				
			||||||
                    # TODO: Do something about non-projective sentences
 | 
					                    # TODO: Do something about non-projective sentences
 | 
				
			||||||
                    continue
 | 
					                    pass
 | 
				
			||||||
                if gold.ents:
 | 
					 | 
				
			||||||
                nlp.entity.train(tokens, gold)
 | 
					                nlp.entity.train(tokens, gold)
 | 
				
			||||||
                nlp.tagger.train(tokens, gold.tags)
 | 
					                nlp.tagger.train(tokens, gold.tags)
 | 
				
			||||||
 | 
					        random.shuffle(gold_tuples)
 | 
				
			||||||
        print '%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.ents_f,
 | 
					        print '%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.ents_f,
 | 
				
			||||||
                                               scorer.tags_acc,
 | 
					                                               scorer.tags_acc,
 | 
				
			||||||
                                               scorer.token_acc)
 | 
					                                               scorer.token_acc)
 | 
				
			||||||
        random.shuffle(gold_tuples)
 | 
					 | 
				
			||||||
    nlp.parser.model.end_training()
 | 
					    nlp.parser.model.end_training()
 | 
				
			||||||
    nlp.entity.model.end_training()
 | 
					    nlp.entity.model.end_training()
 | 
				
			||||||
    nlp.tagger.model.end_training()
 | 
					    nlp.tagger.model.end_training()
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user