Fix entailment example, and add a flag for BiRNN encoding.

This commit is contained in:
Matthew Honnibal 2016-11-12 11:43:37 -06:00
parent 2ee66117ba
commit 89df91846c
3 changed files with 70 additions and 30 deletions

View File

@ -3,25 +3,46 @@ import spacy
import plac
from pathlib import Path
import ujson as json
import numpy
from keras.utils.np_utils import to_categorical
from spacy_hook import get_embeddings, get_word_ids
from spacy_hook import create_similarity_pipeline
from keras_decomposable_attention import build_model
def train(model_dir, train_loc, dev_loc, shape, settings):
train_texts1, train_texts2, train_labels = read_snli(train_loc)
dev_texts1, dev_texts2, dev_labels = read_snli(dev_loc)
print("Loading spaCy")
nlp = spacy.load('en', tagger=False, parser=False, entity=False, matcher=False)
nlp = spacy.load('en')
print("Compiling network")
model = build_model(get_embeddings(nlp.vocab), shape, settings)
print("Processing texts...")
train_X = get_features(list(nlp.pipe(train_texts)))
dev_X = get_features(list(nlp.pipe(dev_texts)))
train_X1 = get_word_ids(list(nlp.pipe(train_texts1, n_threads=10, batch_size=10000)),
max_length=shape[0],
tree_truncate=settings['tree_truncate'])
train_X2 = get_word_ids(list(nlp.pipe(train_texts2, n_threads=10, batch_size=10000)),
max_length=shape[0],
tree_truncate=settings['tree_truncate'])
dev_X1 = get_word_ids(list(nlp.pipe(dev_texts1, n_threads=10, batch_size=10000)),
max_length=shape[0],
tree_truncate=settings['tree_truncate'])
dev_X2 = get_word_ids(list(nlp.pipe(dev_texts2, n_threads=10, batch_size=10000)),
max_length=shape[0],
tree_truncate=settings['tree_truncate'])
print(train_X1.shape, train_X2.shape)
print(dev_X1.shape, dev_X2.shape)
print(train_labels.shape, dev_labels.shape)
print(settings)
model.fit(
train_X,
[train_X1, train_X2],
train_labels,
validation_data=(dev_X, dev_labels),
validation_data=([dev_X1, dev_X2], dev_labels),
nb_epoch=settings['nr_epoch'],
batch_size=settings['batch_size'])
@ -56,16 +77,20 @@ def demo(model_dir):
LABELS = {'entailment': 0, 'contradiction': 1, 'neutral': 2}
def read_snli(loc):
with open(loc) as file_:
def read_snli(path):
texts1 = []
texts2 = []
labels = []
with path.open() as file_:
for line in file_:
eg = json.loads(line)
label = eg['gold_label']
if label == '-':
continue
text1 = eg['sentence1']
text2 = eg['sentence2']
yield text1, text2, LABELS[label]
texts1.append(eg['sentence1'])
texts2.append(eg['sentence2'])
labels.append(LABELS[label])
return texts1, texts2, to_categorical(numpy.asarray(labels, dtype='int32'))
@plac.annotations(
@ -78,9 +103,13 @@ def read_snli(loc):
dropout=("Dropout level", "option", "d", float),
learn_rate=("Learning rate", "option", "e", float),
batch_size=("Batch size for neural network training", "option", "b", float),
nr_epoch=("Number of training epochs", "option", "i", float)
nr_epoch=("Number of training epochs", "option", "i", float),
tree_truncate=("Truncate sentences by tree distance", "flag", "T", bool),
gru_encode=("Encode sentences with bidirectional GRU", "flag", "E", bool),
)
def main(mode, model_dir, train_loc, dev_loc,
tree_truncate=False,
gru_encode=False,
max_length=100,
nr_hidden=100,
dropout=0.2,
@ -92,7 +121,9 @@ def main(mode, model_dir, train_loc, dev_loc,
'lr': learn_rate,
'dropout': dropout,
'batch_size': batch_size,
'nr_epoch': nr_epoch
'nr_epoch': nr_epoch,
'tree_truncate': tree_truncate,
'gru_encode': gru_encode
}
if mode == 'train':
train(model_dir, train_loc, dev_loc, shape, settings)
@ -101,6 +132,5 @@ def main(mode, model_dir, train_loc, dev_loc,
else:
demo(model_dir)
if __name__ == '__main__':
plac.call(main)

View File

@ -4,6 +4,7 @@ import numpy
from keras.layers import InputSpec, Layer, Input, Dense, merge
from keras.layers import Activation, Dropout, Embedding, TimeDistributed
from keras.layers import Bidirectional, GRU
import keras.backend as K
import theano.tensor as T
from keras.models import Sequential, Model, model_from_json
@ -12,7 +13,7 @@ from keras.optimizers import Adam
from keras.layers.normalization import BatchNormalization
def build_model(vectors, shape, settings, use_rnn_encoding=False):
def build_model(vectors, shape, settings):
'''Compile the model.'''
max_length, nr_hidden, nr_class = shape
# Declare inputs.
@ -21,8 +22,8 @@ def build_model(vectors, shape, settings, use_rnn_encoding=False):
# Construct operations, which we'll chain together.
embed = _StaticEmbedding(vectors, max_length, nr_hidden)
if use_rnn_encoding:
encode = _BiLSTMEncode(max_length, nr_hidden)
if settings['gru_encode']:
encode = _BiRNNEncoding(max_length, nr_hidden)
attend = _Attention(max_length, nr_hidden)
align = _SoftAlignment(max_length, nr_hidden)
compare = _Comparison(max_length, nr_hidden)
@ -32,7 +33,7 @@ def build_model(vectors, shape, settings, use_rnn_encoding=False):
sent1 = embed(ids1) # Shape: (i, n)
sent2 = embed(ids2) # Shape: (j, n)
if use_rnn_encoding:
if settings['gru_encode']:
sent1 = encode(sent1)
sent2 = encode(sent2)
@ -78,15 +79,18 @@ class _StaticEmbedding(object):
def __call__(self, sentence):
return self.project(self.embed(sentence))
class _BiRNNEncoding(object):
def __init__(self, max_length, nr_out):
self.model = Sequential()
self.model.add(Bidirectional(LSTM(nr_out, input_length=max_length)))
self.model.add(Bidirectional(GRU(int(nr_out/2), return_sequences=True),
input_shape=(max_length, nr_out)))
def __call__(self, sentence):
return self.model(sentence)
class _Attention(object):
def __init__(self, max_length, nr_hidden, dropout=0.0, L2=1e-4, activation='relu'):
self.max_length = max_length

View File

@ -1,4 +1,5 @@
from keras.models import model_from_json
import numpy
class KerasSimilarityShim(object):
@ -30,7 +31,7 @@ class KerasSimilarityShim(object):
return scores[0]
def get_embeddings(cls, vocab):
def get_embeddings(vocab):
max_rank = max(lex.rank+1 for lex in vocab if lex.has_vector)
vectors = numpy.ndarray((max_rank+1, vocab.vectors_length), dtype='float32')
for lex in vocab:
@ -39,16 +40,24 @@ def get_embeddings(cls, vocab):
return vectors
def get_word_ids(docs, max_length=100):
def get_word_ids(docs, tree_truncate=False, max_length=100):
Xs = numpy.zeros((len(docs), max_length), dtype='int32')
for i, doc in enumerate(docs):
j = 0
for token in doc:
if token.has_vector and not token.is_punct and not token.is_space:
Xs[i, j] = token.rank + 1
j += 1
if j >= max_length:
break
queue = [sent.root for sent in doc.sents]
words = []
while len(words) <= max_length and queue:
word = queue.pop(0)
if word.has_vector and not word.is_punct and not word.is_space:
words.append(word)
queue.extend(list(word.lefts))
queue.extend(list(word.rights))
words.sort()
for j, token in enumerate(words):
Xs[i, j] = token.rank + 1
j += 1
if j >= max_length:
break
return Xs
@ -57,6 +66,3 @@ def create_similarity_pipeline(nlp):
nlp.path / 'similarity',
nlp,
feature_extracter=get_features)]