mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 18:06:29 +03:00
Update example documents
This commit is contained in:
parent
65d66b81f1
commit
89f8b1fba0
|
@ -60,8 +60,8 @@ include _includes/_mixins
|
||||||
# Load English tokenizer, tagger, parser, NER and word vectors
|
# Load English tokenizer, tagger, parser, NER and word vectors
|
||||||
nlp = spacy.load('en')
|
nlp = spacy.load('en')
|
||||||
|
|
||||||
# Process a document, of any size
|
# Process whole documents
|
||||||
text = open('war_and_peace.txt').read()
|
text = open('customer_feedback_627.txt').read()
|
||||||
doc = nlp(text)
|
doc = nlp(text)
|
||||||
|
|
||||||
# Find named entities, phrases and concepts
|
# Find named entities, phrases and concepts
|
||||||
|
|
|
@ -183,11 +183,11 @@ p
|
||||||
from spacy.vocab import Vocab
|
from spacy.vocab import Vocab
|
||||||
|
|
||||||
nlp = spacy.load('en')
|
nlp = spacy.load('en')
|
||||||
moby_dick = open('moby_dick.txt', 'r').read()
|
customer_feedback = open('customer_feedback_627.txt').read()
|
||||||
doc = nlp(moby_dick)
|
doc = nlp(customer_feedback)
|
||||||
doc.to_disk('/moby_dick.bin')
|
doc.to_disk('/tmp/customer_feedback_627.bin')
|
||||||
|
|
||||||
new_doc = Doc(Vocab()).from_disk('/moby_dick.bin')
|
new_doc = Doc(Vocab()).from_disk('/tmp/customer_feedback_627.bin')
|
||||||
|
|
||||||
+infobox
|
+infobox
|
||||||
| #[+label-inline API:] #[+api("language") #[code Language]],
|
| #[+label-inline API:] #[+api("language") #[code Language]],
|
||||||
|
@ -210,7 +210,8 @@ p
|
||||||
pattern2 = [[{'ORTH': emoji, 'OP': '+'}] for emoji in ['😀', '😂', '🤣', '😍']]
|
pattern2 = [[{'ORTH': emoji, 'OP': '+'}] for emoji in ['😀', '😂', '🤣', '😍']]
|
||||||
matcher.add('GoogleIO', None, pattern1) # match "Google I/O" or "Google i/o"
|
matcher.add('GoogleIO', None, pattern1) # match "Google I/O" or "Google i/o"
|
||||||
matcher.add('HAPPY', set_sentiment, *pattern2) # match one or more happy emoji
|
matcher.add('HAPPY', set_sentiment, *pattern2) # match one or more happy emoji
|
||||||
matches = nlp(LOTS_OF TEXT)
|
text = open('customer_feedback_627.txt').read()
|
||||||
|
matches = nlp(text)
|
||||||
|
|
||||||
+infobox
|
+infobox
|
||||||
| #[+label-inline API:] #[+api("matcher") #[code Matcher]]
|
| #[+label-inline API:] #[+api("matcher") #[code Matcher]]
|
||||||
|
|
Loading…
Reference in New Issue
Block a user