mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Use NORM attribute, not LOWER
This commit is contained in:
parent
94e063ae2a
commit
8a17b99b1c
12
spacy/_ml.py
12
spacy/_ml.py
|
@ -13,7 +13,7 @@ from thinc import describe
|
||||||
from thinc.describe import Dimension, Synapses, Biases, Gradient
|
from thinc.describe import Dimension, Synapses, Biases, Gradient
|
||||||
from thinc.neural._classes.affine import _set_dimensions_if_needed
|
from thinc.neural._classes.affine import _set_dimensions_if_needed
|
||||||
|
|
||||||
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
from .attrs import ID, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
||||||
from .tokens.doc import Doc
|
from .tokens.doc import Doc
|
||||||
|
|
||||||
import numpy
|
import numpy
|
||||||
|
@ -131,14 +131,14 @@ class PrecomputableMaxouts(Model):
|
||||||
return Yfp, backward
|
return Yfp, backward
|
||||||
|
|
||||||
def Tok2Vec(width, embed_size, preprocess=None):
|
def Tok2Vec(width, embed_size, preprocess=None):
|
||||||
cols = [ID, LOWER, PREFIX, SUFFIX, SHAPE]
|
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE]
|
||||||
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
|
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
|
||||||
lower = get_col(cols.index(LOWER)) >> HashEmbed(width, embed_size, name='embed_lower')
|
norm = get_col(cols.index(NORM)) >> HashEmbed(width, embed_size, name='embed_lower')
|
||||||
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2, name='embed_prefix')
|
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2, name='embed_prefix')
|
||||||
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size//2, name='embed_suffix')
|
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size//2, name='embed_suffix')
|
||||||
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size//2, name='embed_shape')
|
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size//2, name='embed_shape')
|
||||||
|
|
||||||
embed = (lower | prefix | suffix | shape )
|
embed = (norm | prefix | suffix | shape )
|
||||||
tok2vec = (
|
tok2vec = (
|
||||||
with_flatten(
|
with_flatten(
|
||||||
asarray(Model.ops, dtype='uint64')
|
asarray(Model.ops, dtype='uint64')
|
||||||
|
@ -148,7 +148,7 @@ def Tok2Vec(width, embed_size, preprocess=None):
|
||||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3)),
|
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3)),
|
||||||
pad=4, ndim=5)
|
pad=4)
|
||||||
)
|
)
|
||||||
if preprocess not in (False, None):
|
if preprocess not in (False, None):
|
||||||
tok2vec = preprocess >> tok2vec
|
tok2vec = preprocess >> tok2vec
|
||||||
|
@ -243,7 +243,7 @@ def zero_init(model):
|
||||||
|
|
||||||
|
|
||||||
def doc2feats(cols=None):
|
def doc2feats(cols=None):
|
||||||
cols = [ID, LOWER, PREFIX, SUFFIX, SHAPE]
|
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE]
|
||||||
def forward(docs, drop=0.):
|
def forward(docs, drop=0.):
|
||||||
feats = []
|
feats = []
|
||||||
for doc in docs:
|
for doc in docs:
|
||||||
|
|
Loading…
Reference in New Issue
Block a user