mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
Fix GPU usage in chainer example
This commit is contained in:
parent
4c84aae571
commit
8a2de46fcb
|
@ -1,6 +1,7 @@
|
|||
'''WIP --- Doesn't work well yet'''
|
||||
import plac
|
||||
import random
|
||||
import six
|
||||
|
||||
import pathlib
|
||||
import cPickle as pickle
|
||||
|
@ -9,7 +10,10 @@ from itertools import izip
|
|||
import spacy
|
||||
|
||||
import cytoolz
|
||||
import numpy as np
|
||||
import cupy as xp
|
||||
import cupy.cuda
|
||||
import chainer.cuda
|
||||
|
||||
import chainer.links as L
|
||||
import chainer.functions as F
|
||||
from chainer import Chain, Variable, report
|
||||
|
@ -17,7 +21,7 @@ import chainer.training
|
|||
import chainer.optimizers
|
||||
from chainer.training import extensions
|
||||
from chainer.iterators import SerialIterator
|
||||
from chainer.datasets.tuple_dataset import TupleDataset
|
||||
from chainer.datasets import TupleDataset
|
||||
|
||||
|
||||
class SentimentAnalyser(object):
|
||||
|
@ -79,6 +83,7 @@ class SentimentModel(Chain):
|
|||
encode=_Encode(shape['nr_hidden'], shape['nr_hidden']),
|
||||
attend=_Attend(shape['nr_hidden'], shape['nr_hidden']),
|
||||
predict=_Predict(shape['nr_hidden'], shape['nr_class']))
|
||||
self.to_gpu(0)
|
||||
|
||||
def __call__(self, sentence):
|
||||
return self.predict(
|
||||
|
@ -145,6 +150,16 @@ class SentenceDataset(TupleDataset):
|
|||
get_features(sents, max_length),
|
||||
labels)
|
||||
|
||||
def __getitem__(self, index):
|
||||
batches = [dataset[index] for dataset in self._datasets]
|
||||
if isinstance(index, slice):
|
||||
length = len(batches[0])
|
||||
returns = [tuple([batch[i] for batch in batches])
|
||||
for i in six.moves.range(length)]
|
||||
return returns
|
||||
else:
|
||||
return tuple(batches)
|
||||
|
||||
def _get_labelled_sentences(self, docs, doc_labels):
|
||||
labels = []
|
||||
sentences = []
|
||||
|
@ -152,19 +167,17 @@ class SentenceDataset(TupleDataset):
|
|||
for sent in doc.sents:
|
||||
sentences.append(sent)
|
||||
labels.append(y)
|
||||
return sentences, labels
|
||||
return sentences, xp.asarray(labels, dtype='i')
|
||||
|
||||
|
||||
class DocDataset(TupleDataset):
|
||||
def __init__(self, nlp, texts, labels):
|
||||
self.max_length = max_length
|
||||
TupleDataset.__init__(self,
|
||||
DatasetMixin.__init__(self,
|
||||
get_features(
|
||||
nlp.pipe(texts, batch_size=5000, n_threads=3), self.max_length),
|
||||
labels)
|
||||
|
||||
|
||||
|
||||
def read_data(data_dir, limit=0):
|
||||
examples = []
|
||||
for subdir, label in (('pos', 1), ('neg', 0)):
|
||||
|
@ -180,7 +193,7 @@ def read_data(data_dir, limit=0):
|
|||
|
||||
def get_features(docs, max_length):
|
||||
docs = list(docs)
|
||||
Xs = np.zeros((len(docs), max_length), dtype='int32')
|
||||
Xs = xp.zeros((len(docs), max_length), dtype='i')
|
||||
for i, doc in enumerate(docs):
|
||||
j = 0
|
||||
for token in doc:
|
||||
|
@ -195,7 +208,7 @@ def get_features(docs, max_length):
|
|||
def get_embeddings(vocab, max_rank=1000):
|
||||
if max_rank is None:
|
||||
max_rank = max(lex.rank+1 for lex in vocab if lex.has_vector)
|
||||
vectors = np.ndarray((max_rank+1, vocab.vectors_length), dtype='float32')
|
||||
vectors = xp.ndarray((max_rank+1, vocab.vectors_length), dtype='f')
|
||||
for lex in vocab:
|
||||
if lex.has_vector and lex.rank < max_rank:
|
||||
lex.norm = lex.rank+1
|
||||
|
@ -208,15 +221,12 @@ def get_embeddings(vocab, max_rank=1000):
|
|||
def train(train_texts, train_labels, dev_texts, dev_labels,
|
||||
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5,
|
||||
by_sentence=True):
|
||||
print("Loading spaCy")
|
||||
nlp = spacy.load('en', entity=False)
|
||||
for lex in nlp.vocab:
|
||||
if lex.rank >= (lstm_shape['nr_vector'] - 1):
|
||||
lex.norm = 0
|
||||
else:
|
||||
lex.norm = lex.rank+1
|
||||
#print("Get embeddings")
|
||||
#embeddings = get_embeddings(nlp.vocab)
|
||||
print("Make model")
|
||||
model = Classifier(SentimentModel(lstm_shape, **lstm_settings))
|
||||
print("Parsing texts...")
|
||||
|
@ -230,13 +240,12 @@ def train(train_texts, train_labels, dev_texts, dev_labels,
|
|||
shuffle=True, repeat=True)
|
||||
dev_iter = SerialIterator(dev_data, batch_size=batch_size,
|
||||
shuffle=False, repeat=False)
|
||||
|
||||
optimizer = chainer.optimizers.Adam()
|
||||
optimizer.setup(model)
|
||||
updater = chainer.training.StandardUpdater(train_iter, optimizer)
|
||||
updater = chainer.training.StandardUpdater(train_iter, optimizer, device=0)
|
||||
trainer = chainer.training.Trainer(updater, (20, 'epoch'), out='result')
|
||||
|
||||
trainer.extend(extensions.Evaluator(dev_iter, model))
|
||||
trainer.extend(extensions.Evaluator(dev_iter, model, device=0))
|
||||
trainer.extend(extensions.LogReport())
|
||||
trainer.extend(extensions.PrintReport([
|
||||
'epoch', 'main/accuracy', 'validation/main/accuracy']))
|
||||
|
@ -293,14 +302,16 @@ def main(model_dir, train_dir, dev_dir,
|
|||
print("Read data")
|
||||
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
|
||||
dev_texts, dev_labels = read_data(dev_dir, limit=nr_examples)
|
||||
train_labels = np.asarray(train_labels, dtype='int32')
|
||||
dev_labels = np.asarray(dev_labels, dtype='int32')
|
||||
print("Using GPU 0")
|
||||
#chainer.cuda.get_device(0).use()
|
||||
train_labels = xp.asarray(train_labels, dtype='i')
|
||||
dev_labels = xp.asarray(dev_labels, dtype='i')
|
||||
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
|
||||
{'nr_hidden': nr_hidden, 'max_length': max_length, 'nr_class': 2,
|
||||
'nr_vector': 2000, 'nr_dim': 32},
|
||||
{'dropout': 0.5, 'lr': learn_rate},
|
||||
{},
|
||||
nb_epoch=nb_epoch, batch_size=batch_size)
|
||||
{'dropout': 0.5, 'lr': learn_rate},
|
||||
{},
|
||||
nb_epoch=nb_epoch, batch_size=batch_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
Loading…
Reference in New Issue
Block a user