mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
Add pipelines 101 and rewrite pipelines workflow
This commit is contained in:
parent
54885b5e88
commit
8aaed8bea7
|
@ -105,7 +105,7 @@
|
|||
},
|
||||
|
||||
"language-processing-pipeline": {
|
||||
"title": "Natural language processing pipelines",
|
||||
"title": "Language processing pipelines",
|
||||
"next": "deep-learning"
|
||||
},
|
||||
|
||||
|
|
44
website/docs/usage/_spacy-101/_pipelines.jade
Normal file
44
website/docs/usage/_spacy-101/_pipelines.jade
Normal file
|
@ -0,0 +1,44 @@
|
|||
//- 💫 DOCS > USAGE > SPACY 101 > PIPELINES
|
||||
|
||||
p
|
||||
| When you call #[code nlp] on a text, spaCy first tokenizes the text to
|
||||
| produce a #[code Doc] object. The #[code Doc] is the processed in several
|
||||
| different steps – this is also referred to as the
|
||||
| #[strong processing pipeline]. The pipeline used by our
|
||||
| #[+a("/docs/usage/models") default models] consists of a
|
||||
| vectorizer, a tagger, a parser and an entity recognizer. Each pipeline
|
||||
| component returns the processed #[code Doc], which is then passed on to
|
||||
| the next component.
|
||||
|
||||
+image
|
||||
include ../../../assets/img/docs/pipeline.svg
|
||||
.u-text-right
|
||||
+button("/assets/img/docs/pipeline.svg", false, "secondary").u-text-tag View large graphic
|
||||
|
||||
+table(["Name", "Component", "Creates"])
|
||||
+row
|
||||
+cell tokenizer
|
||||
+cell #[+api("tokenizer") #[code Tokenizer]]
|
||||
+cell #[code Doc]
|
||||
|
||||
+row("divider")
|
||||
+cell vectorizer
|
||||
+cell #[code Vectorizer]
|
||||
+cell #[code Doc.tensor]
|
||||
|
||||
+row
|
||||
+cell tagger
|
||||
+cell #[+api("tagger") #[code Tagger]]
|
||||
+cell #[code Doc[i].tag]
|
||||
|
||||
+row
|
||||
+cell parser
|
||||
+cell #[+api("dependencyparser") #[code DependencyParser]]
|
||||
+cell
|
||||
| #[code Doc[i].head], #[code Doc[i].dep], #[code Doc.sents],
|
||||
| #[code Doc.noun_chunks]
|
||||
|
||||
+row
|
||||
+cell ner
|
||||
+cell #[+api("entityrecognizer") #[code EntityRecognizer]]
|
||||
+cell #[code Doc.ents], #[code Doc[i].ent_iob], #[code Doc[i].ent_type]
|
|
@ -2,164 +2,316 @@
|
|||
|
||||
include ../../_includes/_mixins
|
||||
|
||||
p
|
||||
| The standard entry point into spaCy is the #[code spacy.load()]
|
||||
| function, which constructs a language processing pipeline. The standard
|
||||
| variable name for the language processing pipeline is #[code nlp], for
|
||||
| Natural Language Processing. The #[code nlp] variable is usually an
|
||||
| instance of class #[code spacy.language.Language]. For English, the
|
||||
| #[code spacy.en.English] class is the default.
|
||||
+h(2, "101") Pipelines 101
|
||||
|
||||
include _spacy-101/_pipelines
|
||||
|
||||
+h(2, "pipelines") How pipelines work
|
||||
|
||||
p
|
||||
| You'll use the nlp instance to produce #[+api("doc") #[code Doc]]
|
||||
| objects. You'll then use the #[code Doc] object to access linguistic
|
||||
| annotations to help you with whatever text processing task you're
|
||||
| trying to do.
|
||||
|
||||
+code.
|
||||
import spacy # See "Installing spaCy"
|
||||
nlp = spacy.load('en') # You are here.
|
||||
doc = nlp(u'Hello, spacy!') # See "Using the pipeline"
|
||||
print((w.text, w.pos_) for w in doc) # See "Doc, Span and Token"
|
||||
|
||||
+aside("Why do we have to preload?")
|
||||
| Loading the models takes ~200x longer than
|
||||
| processing a document. We therefore want to amortize the start-up cost
|
||||
| across multiple invocations. It's often best to wrap the pipeline as a
|
||||
| singleton. The library avoids doing that for you, because it's a
|
||||
| difficult design to back out of.
|
||||
|
||||
p The #[code load] function takes the following positional arguments:
|
||||
|
||||
+table([ "Name", "Description" ])
|
||||
+row
|
||||
+cell #[code lang_id]
|
||||
+cell
|
||||
| An ID that is resolved to a class or factory function by
|
||||
| #[code spacy.util.get_lang_class()]. Common values are
|
||||
| #[code 'en'] for the English pipeline, or #[code 'de'] for the
|
||||
| German pipeline. You can register your own factory function or
|
||||
| class with #[code spacy.util.set_lang_class()].
|
||||
| spaCy makes it very easy to create your own pipelines consisting of
|
||||
| reusable components – this includes spaCy's default vectorizer, tagger,
|
||||
| parser and entity regcognizer, but also your own custom processing
|
||||
| functions. A pipeline component can be added to an already existing
|
||||
| #[code nlp] object, specified when initialising a #[code Language] class,
|
||||
| or defined within a
|
||||
| #[+a("/docs/usage/saving-loading#models-generating") model package].
|
||||
|
||||
p
|
||||
| All keyword arguments are passed forward to the pipeline factory. No
|
||||
| keyword arguments are required. The built-in factories (e.g.
|
||||
| #[code spacy.en.English], #[code spacy.de.German]), which are subclasses
|
||||
| of #[+api("language") #[code Language]], respond to the following
|
||||
| keyword arguments:
|
||||
| When you load a model, spaCy first consults the model's
|
||||
| #[+a("/docs/usage/saving-loading#models-generating") meta.json] for its
|
||||
| #[code setup] details. This typically includes the ID of a language class,
|
||||
| and an optional list of pipeline components. spaCy then does the
|
||||
| following:
|
||||
|
||||
+table([ "Name", "Description"])
|
||||
+row
|
||||
+cell #[code path]
|
||||
+cell
|
||||
| Where to load the data from. If None, the default data path is
|
||||
| fetched via #[code spacy.util.get_data_path()]. You can
|
||||
| configure this default using #[code spacy.util.set_data_path()].
|
||||
| The data path is expected to be either a string, or an object
|
||||
| responding to the #[code pathlib.Path] interface. If the path is
|
||||
| a string, it will be immediately transformed into a
|
||||
| #[code pathlib.Path] object. spaCy promises to never manipulate
|
||||
| or open file-system paths as strings. All access to the
|
||||
| file-system is done via the #[code pathlib.Path] interface.
|
||||
| spaCy also promises to never check the type of path objects.
|
||||
| This allows you to customize the loading behaviours in arbitrary
|
||||
| ways, by creating your own object that implements the
|
||||
| #[code pathlib.Path] interface.
|
||||
+aside-code("meta.json (excerpt)", "json").
|
||||
{
|
||||
"name": "example_model",
|
||||
"description": "Example model for spaCy",
|
||||
"setup": {
|
||||
"lang": "en",
|
||||
"pipeline": ["token_vectors", "tagger"]
|
||||
}
|
||||
}
|
||||
|
||||
+row
|
||||
+cell #[code pipeline]
|
||||
+cell
|
||||
| A sequence of functions that take the Doc object and modify it
|
||||
| in-place. See
|
||||
| #[+a("customizing-pipeline") Customizing the pipeline].
|
||||
|
||||
+row
|
||||
+cell #[code create_pipeline]
|
||||
+cell
|
||||
| Callback to construct the pipeline sequence. It should accept
|
||||
| the #[code nlp] instance as its only argument, and return a
|
||||
| sequence of functions that take the #[code Doc] object and
|
||||
| modify it in-place.
|
||||
| See #[+a("customizing-pipeline") Customizing the pipeline]. If
|
||||
| a value is supplied to the pipeline keyword argument, the
|
||||
| #[code create_pipeline] keyword argument is ignored.
|
||||
|
||||
+row
|
||||
+cell #[code make_doc]
|
||||
+cell A function that takes the input and returns a document object.
|
||||
|
||||
+row
|
||||
+cell #[code create_make_doc]
|
||||
+cell
|
||||
| Callback to construct the #[code make_doc] function. It should
|
||||
| accept the #[code nlp] instance as its only argument. To use the
|
||||
| built-in annotation processes, it should return an object of
|
||||
| type #[code Doc]. If a value is supplied to the #[code make_doc]
|
||||
| keyword argument, the #[code create_make_doc] keyword argument
|
||||
| is ignored.
|
||||
|
||||
+row
|
||||
+cell #[code vocab]
|
||||
+cell Supply a pre-built Vocab instance, instead of constructing one.
|
||||
|
||||
+row
|
||||
+cell #[code add_vectors]
|
||||
+cell
|
||||
| Callback that installs word vectors into the Vocab instance. The
|
||||
| #[code add_vectors] callback should take a
|
||||
| #[+api("vocab") #[code Vocab]] instance as its only argument,
|
||||
| and set the word vectors and #[code vectors_length] in-place. See
|
||||
| #[+a("word-vectors-similarities") Word Vectors and Similarities].
|
||||
|
||||
+row
|
||||
+cell #[code tagger]
|
||||
+cell Supply a pre-built tagger, instead of creating one.
|
||||
|
||||
+row
|
||||
+cell #[code parser]
|
||||
+cell Supply a pre-built parser, instead of creating one.
|
||||
|
||||
+row
|
||||
+cell #[code entity]
|
||||
+cell Supply a pre-built entity recognizer, instead of creating one.
|
||||
|
||||
+row
|
||||
+cell #[code matcher]
|
||||
+cell Supply a pre-built matcher, instead of creating one.
|
||||
|
||||
+h(2, "customizing") Customizing the pipeline
|
||||
+list("numbers")
|
||||
+item
|
||||
| Look up #[strong pipeline IDs] in the available
|
||||
| #[strong pipeline factories].
|
||||
+item
|
||||
| Initialise the #[strong pipeline components] by calling their
|
||||
| factories with the #[code Vocab] as an argument. This gives each
|
||||
| factory and component access to the pipeline's shared data, like
|
||||
| strings, morphology and annotation scheme.
|
||||
+item
|
||||
| Load the #[strong language class and data] for the given ID via
|
||||
| #[+api("util.get_lang_class") #[code get_lang_class]].
|
||||
+item
|
||||
| Pass the path to the #[strong model data] to the #[code Language]
|
||||
| class and return it.
|
||||
|
||||
p
|
||||
| spaCy provides several linguistic annotation functions by default. Each
|
||||
| function takes a Doc object, and modifies it in-place. The default
|
||||
| pipeline is #[code [nlp.tagger, nlp.entity, nlp.parser]]. spaCy 1.0
|
||||
| introduced the ability to customise this pipeline with arbitrary
|
||||
| functions.
|
||||
|
||||
+code.
|
||||
def arbitrary_fixup_rules(doc):
|
||||
for token in doc:
|
||||
if token.text == u'bill' and token.tag_ == u'NNP':
|
||||
token.tag_ = u'NN'
|
||||
|
||||
def custom_pipeline(nlp):
|
||||
return (nlp.tagger, arbitrary_fixup_rules, nlp.parser, nlp.entity)
|
||||
|
||||
nlp = spacy.load('en', create_pipeline=custom_pipeline)
|
||||
|
||||
p
|
||||
| The easiest way to customise the pipeline is to pass a
|
||||
| #[code create_pipeline] callback to the #[code spacy.load()] function.
|
||||
|
||||
p
|
||||
| The callback you pass to #[code create_pipeline] should take a single
|
||||
| argument, and return a sequence of callables. Each callable in the
|
||||
| sequence should accept a #[code Doc] object and modify it in place.
|
||||
|
||||
p
|
||||
| Instead of passing a callback, you can also write to the
|
||||
| #[code .pipeline] attribute directly.
|
||||
| So when you call this...
|
||||
|
||||
+code.
|
||||
nlp = spacy.load('en')
|
||||
nlp.pipeline = [nlp.tagger]
|
||||
|
||||
p
|
||||
| ... the model tells spaCy to use the pipeline
|
||||
| #[code ["vectorizer", "tagger", "parser", "ner"]]. spaCy will then look
|
||||
| up each string in its internal factories registry and initialise the
|
||||
| individual components. It'll then load #[code spacy.lang.en.English],
|
||||
| pass it the path to the model's data directory, and return it for you
|
||||
| to use as the #[code nlp] object.
|
||||
|
||||
p
|
||||
| When you call #[code nlp] on a text, spaCy will #[strong tokenize] it and
|
||||
| then #[strong call each component] on the #[code Doc], in order.
|
||||
| Components all return the modified document, which is then processed by
|
||||
| the component next in the pipeline.
|
||||
|
||||
+code("The pipeline under the hood").
|
||||
doc = nlp.make_doc(u'This is a sentence')
|
||||
for proc in nlp.pipeline:
|
||||
doc = proc(doc)
|
||||
|
||||
+h(2, "creating") Creating pipeline components and factories
|
||||
|
||||
p
|
||||
| spaCy lets you customise the pipeline with your own components. Components
|
||||
| are functions that receive a #[code Doc] object, modify and return it.
|
||||
| If your component is stateful, you'll want to create a new one for each
|
||||
| pipeline. You can do that by defining and registering a factory which
|
||||
| receives the shared #[code Vocab] object and returns a component.
|
||||
|
||||
+h(3, "creating-component") Creating a component
|
||||
|
||||
p
|
||||
| A component receives a #[code Doc] object and
|
||||
| #[strong performs the actual processing] – for example, using the current
|
||||
| weights to make a prediction and set some annotation on the document. By
|
||||
| adding a component to the pipeline, you'll get access to the #[code Doc]
|
||||
| at any point #[strong during] processing – instead of only being able to
|
||||
| modify it afterwards.
|
||||
|
||||
+aside-code("Example").
|
||||
def my_component(doc):
|
||||
# do something to the doc here
|
||||
return doc
|
||||
|
||||
+table(["Argument", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code doc]
|
||||
+cell #[code Doc]
|
||||
+cell The #[code Doc] object processed by the previous component.
|
||||
|
||||
+footrow
|
||||
+cell returns
|
||||
+cell #[code Doc]
|
||||
+cell The #[code Doc] object processed by this pipeline component.
|
||||
|
||||
p
|
||||
| When creating a new #[code Language] class, you can pass it a list of
|
||||
| pipeline component functions to execute in that order. You can also
|
||||
| add it to an existing pipeline by modifying #[code nlp.pipeline] – just
|
||||
| be careful not to overwrite a pipeline or its components by accident!
|
||||
|
||||
+code.
|
||||
# Create a new Language object with a pipeline
|
||||
from spacy.language import Language
|
||||
nlp = Language(pipeline=[my_component])
|
||||
|
||||
# Modify an existing pipeline
|
||||
nlp = spacy.load('en')
|
||||
nlp.pipeline.append(my_component)
|
||||
|
||||
+h(3, "creating-factory") Creating a factory
|
||||
|
||||
p
|
||||
| A factory is a #[strong function that returns a pipeline component].
|
||||
| It's called with the #[code Vocab] object, to give it access to the
|
||||
| shared data between components – for example, the strings, morphology,
|
||||
| vectors or annotation scheme. Factories are useful for creating
|
||||
| #[strong stateful components], especially ones which
|
||||
| #[strong depend on shared data].
|
||||
|
||||
+aside-code("Example").
|
||||
def my_factory(vocab):
|
||||
# load some state
|
||||
def my_component(doc):
|
||||
# process the doc
|
||||
return doc
|
||||
return my_component
|
||||
|
||||
+table(["Argument", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code vocab]
|
||||
+cell #[coce Vocab]
|
||||
+cell
|
||||
| Shared data between components, including strings, morphology,
|
||||
| vectors etc.
|
||||
|
||||
+footrow
|
||||
+cell returns
|
||||
+cell callable
|
||||
+cell The pipeline component.
|
||||
|
||||
p
|
||||
| By creating a factory, you're essentially telling spaCy how to get the
|
||||
| pipeline component #[strong once the vocab is available]. Factories need to
|
||||
| be registered via #[+api("spacy#set_factory") #[code set_factory()]] and
|
||||
| by assigning them a unique ID. This ID can be added to the pipeline as a
|
||||
| string. When creating a pipeline, you're free to mix strings and
|
||||
| callable components:
|
||||
|
||||
+code.
|
||||
spacy.set_factory('my_factory', my_factory)
|
||||
nlp = Language(pipeline=['my_factory', my_other_component])
|
||||
|
||||
p
|
||||
| If spaCy comes across a string in the pipeline, it will try to resolve it
|
||||
| by looking it up in the available factories. The factory will then be
|
||||
| initialised with the #[code Vocab]. Providing factory names instead of
|
||||
| callables also makes it easy to specify them in the model's
|
||||
| #[+a("/docs/usage/saving-loading#models-generating") meta.json]. If you're
|
||||
| training your own model and want to use one of spaCy's default components,
|
||||
| you won't have to worry about finding and implementing it either – to use
|
||||
| the default tagger, simply add #[code "tagger"] to the pipeline, and
|
||||
| #[strong spaCy will know what to do].
|
||||
|
||||
|
||||
+infobox("Important note")
|
||||
| Because factories are #[strong resolved on initialisation] of the
|
||||
| #[code Language] class, it's #[strong not possible] to add them to the
|
||||
| pipeline afterwards, e.g. by modifying #[code nlp.pipeline]. This only
|
||||
| works with individual component functions. To use factories, you need to
|
||||
| create a new #[code Language] object, or generate a
|
||||
| #[+a("/docs/usage/saving-loading#models-generating") model package] with
|
||||
| a custom pipeline.
|
||||
|
||||
+h(2, "example1") Example: Custom sentence segmentation logic
|
||||
|
||||
+aside("Real-world examples")
|
||||
| To see real-world examples of pipeline factories and components in action,
|
||||
| you can have a look at the source of spaCy's built-in components, e.g.
|
||||
| the #[+src(gh("spacy")) tagger], #[+src(gh("spacy")) parser] or
|
||||
| #[+src(gh("spacy")) entity recognizer].
|
||||
|
||||
p
|
||||
| Let's say you want to implement custom logic to improve spaCy's sentence
|
||||
| boundary detection. Currently, sentence segmentation is based on the
|
||||
| dependency parse, which doesn't always produce ideal results. The custom
|
||||
| logic should therefore be applied #[strong after] tokenization, but
|
||||
| #[strong before] the dependency parsing – this way, the parser can also
|
||||
| take advantage of the sentence boundaries.
|
||||
|
||||
+code.
|
||||
def sbd_component(doc):
|
||||
for i, token in enumerate(doc[:-2]):
|
||||
# define sentence start if period + titlecase token
|
||||
if token.text == '.' and doc[i+1].is_title:
|
||||
doc[i+1].sent_start = True
|
||||
return doc
|
||||
|
||||
p
|
||||
| In this case, we simply want to add the component to the existing
|
||||
| pipeline of the English model. We can do this by inserting it at index 0
|
||||
| of #[code nlp.pipeline]:
|
||||
|
||||
+code.
|
||||
nlp = spacy.load('en')
|
||||
nlp.pipeline.insert(0, sbd_component)
|
||||
|
||||
p
|
||||
| When you call #[code nlp] on some text, spaCy will tokenize it to create
|
||||
| a #[code Doc] object, and first call #[code sbd_component] on it, followed
|
||||
| by the model's default pipeline.
|
||||
|
||||
+h(2, "example2") Example: Sentiment model
|
||||
|
||||
p
|
||||
| Let's say you have trained your own document sentiment model on English
|
||||
| text. After tokenization, you want spaCy to first execute the
|
||||
| #[strong default vectorizer], followed by a custom
|
||||
| #[strong sentiment component] that adds a #[code .sentiment]
|
||||
| property to the #[code Doc], containing your model's sentiment precition.
|
||||
|
||||
p
|
||||
| Your component class will have a #[code from_disk()] method that spaCy
|
||||
| calls to load the model data. When called, the component will compute
|
||||
| the sentiment score, add it to the #[code Doc] and return the modified
|
||||
| document. Optionally, the component can include an #[code update()] method
|
||||
| to allow training the model.
|
||||
|
||||
+code.
|
||||
import pickle
|
||||
from pathlib import Path
|
||||
|
||||
class SentimentComponent(object):
|
||||
def __init__(self, vocab):
|
||||
self.weights = None
|
||||
|
||||
def __call__(self, doc):
|
||||
doc.sentiment = sum(self.weights*doc.vector) # set sentiment property
|
||||
return doc
|
||||
|
||||
def from_disk(self, path): # path = model path + factory ID ('sentiment')
|
||||
self.weights = pickle.load(Path(path) / 'weights.bin') # load weights
|
||||
return self
|
||||
|
||||
def update(self, doc, gold): # update weights – allows training!
|
||||
prediction = sum(self.weights*doc.vector)
|
||||
self.weights -= 0.001*doc.vector*(prediction-gold.sentiment)
|
||||
|
||||
p
|
||||
| The factory will initialise the component with the #[code Vocab] object.
|
||||
| To be able to add it to your model's pipeline as #[code 'sentiment'],
|
||||
| it also needs to be registered via
|
||||
| #[+api("spacy#set_factory") #[code set_factory()]].
|
||||
|
||||
+code.
|
||||
def sentiment_factory(vocab):
|
||||
component = SentimentComponent(vocab) # initialise component
|
||||
return component
|
||||
|
||||
spacy.set_factory('sentiment', sentiment_factory)
|
||||
|
||||
p
|
||||
| The above code should be #[strong shipped with your model]. You can use
|
||||
| the #[+api("cli#package") #[code package]] command to create all required
|
||||
| files and directories. The model package will include an
|
||||
| #[+src(gh("spacy-dev-resources", "templates/model/en_model_name/__init__.py")) __init__.py]
|
||||
| with a #[code load()] method, that will initialise the language class with
|
||||
| the model's pipeline and call the #[code from_disk()] method to load
|
||||
| the model data.
|
||||
|
||||
p
|
||||
| In the model package's meta.json, specify the language class and pipeline
|
||||
| IDs in #[code setup]:
|
||||
|
||||
+code("meta.json (excerpt)", "json").
|
||||
{
|
||||
"name": "my_sentiment_model",
|
||||
"version": "1.0.0",
|
||||
"spacy_version": ">=2.0.0,<3.0.0",
|
||||
"setup": {
|
||||
"lang": "en",
|
||||
"pipeline": ["vectorizer", "sentiment"]
|
||||
}
|
||||
}
|
||||
|
||||
p
|
||||
| When you load your new model, spaCy will call the model's #[code load()]
|
||||
| method. This will return a #[code Language] object with a pipeline
|
||||
| containing the default vectorizer, and the sentiment component returned
|
||||
| by your custom #[code "sentiment"] factory.
|
||||
|
||||
+code.
|
||||
nlp = spacy.load('my_sentiment_model')
|
||||
doc = nlp(u'I love pizza')
|
||||
assert doc.sentiment
|
||||
|
||||
+infobox("Saving and loading models")
|
||||
| For more information and a detailed guide on how to package your model,
|
||||
| see the documentation on
|
||||
| #[+a("/docs/usage/saving-loading#models") saving and loading models].
|
||||
|
|
|
@ -105,6 +105,8 @@ include _spacy-101/_word-vectors
|
|||
|
||||
+h(2, "pipelines") Pipelines
|
||||
|
||||
include _spacy-101/_pipelines
|
||||
|
||||
+h(2, "serialization") Serialization
|
||||
|
||||
include _spacy-101/_serialization
|
||||
|
|
Loading…
Reference in New Issue
Block a user