diff --git a/website/meta/universe.json b/website/meta/universe.json index db7657591..e651921ea 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -231,6 +231,49 @@ "website": "https://koaning.io" } }, + { + "id": "tokenwiser", + "title": "tokenwiser", + "slogan": "Connect vowpal-wabbit & scikit-learn models to spaCy to run simple classification benchmarks. Comes with many utility functions for spaCy pipelines.", + "github": "koaning/tokenwiser", + "pip": "tokenwiser", + "thumb": "https://koaning.github.io/tokenwiser/token.png", + "image": "https://koaning.github.io/tokenwiser/logo-tokw.png", + "code_example": [ + "import spacy", + "", + "from sklearn.pipeline import make_pipeline", + "from sklearn.feature_extraction.text import CountVectorizer", + "from sklearn.linear_model import LogisticRegression", + "", + "from tokenwiser.component import attach_sklearn_categoriser", + "", + "X = [", + " 'i really like this post',", + " 'thanks for that comment',", + " 'i enjoy this friendly forum',", + " 'this is a bad post',", + " 'i dislike this article',", + " 'this is not well written'", + "]", + "", + "y = ['pos', 'pos', 'pos', 'neg', 'neg', 'neg']", + "", + "# Note that we're training a pipeline here via a single-batch `.fit()` method", + "pipe = make_pipeline(CountVectorizer(), LogisticRegression()).fit(X, y)", + "", + "nlp = spacy.load('en_core_web_sm')", + "# This is where we attach our pre-trained model as a pipeline step.", + "attach_sklearn_categoriser(nlp, pipe_name='silly_sentiment', estimator=pipe)" + ], + "category": ["pipeline", "training"], + "author": "Vincent D. Warmerdam", + "author_links": { + "twitter": "fishnets88", + "github": "koaning", + "website": "https://koaning.io" + } + }, { "id": "spacy-stanza", "title": "spacy-stanza",