mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
Add and update score methods and score weights
Add and update `score` methods, provided `scores`, and default weights `default_score_weights` for pipeline components. * `scores` provides all top-level keys returned by `score` (merely informative, similar to `assigns`). * `default_score_weights` provides the default weights for a default config. * The keys from `default_score_weights` determine which values will be shown in the `spacy train` output, so keys with weight `0.0` will be displayed but not counted toward the overall score.
This commit is contained in:
parent
baf19fd652
commit
8bb0507777
|
@ -395,7 +395,7 @@ def subdivide_batch(batch, accumulate_gradient):
|
|||
def setup_printer(
|
||||
training: Union[Dict[str, Any], Config], nlp: Language
|
||||
) -> Callable[[Dict[str, Any]], None]:
|
||||
score_cols = training["scores"]
|
||||
score_cols = list(training["score_weights"])
|
||||
score_widths = [max(len(col), 6) for col in score_cols]
|
||||
loss_cols = [f"Loss {pipe}" for pipe in nlp.pipe_names]
|
||||
loss_widths = [max(len(col), 8) for col in loss_cols]
|
||||
|
|
|
@ -230,11 +230,12 @@ class Language:
|
|||
pipe_config = self.get_pipe_config(pipe_name)
|
||||
pipeline[pipe_name] = {"factory": pipe_meta.factory, **pipe_config}
|
||||
scores.extend(pipe_meta.scores)
|
||||
if pipe_meta.score_weights:
|
||||
score_weights.append(pipe_meta.score_weights)
|
||||
if pipe_meta.default_score_weights:
|
||||
score_weights.append(pipe_meta.default_score_weights)
|
||||
self._config["nlp"]["pipeline"] = self.pipe_names
|
||||
self._config["components"] = pipeline
|
||||
self._config["training"]["scores"] = list(scores)
|
||||
self._config["training"]["scores"] = sorted(set(scores))
|
||||
combined_score_weights = combine_score_weights(score_weights)
|
||||
self._config["training"]["score_weights"] = combine_score_weights(score_weights)
|
||||
if not srsly.is_json_serializable(self._config):
|
||||
raise ValueError(Errors.E961.format(config=self._config))
|
||||
|
@ -357,7 +358,7 @@ class Language:
|
|||
requires: Iterable[str] = tuple(),
|
||||
retokenizes: bool = False,
|
||||
scores: Iterable[str] = tuple(),
|
||||
score_weights: Dict[str, float] = SimpleFrozenDict(),
|
||||
default_score_weights: Dict[str, float] = SimpleFrozenDict(),
|
||||
func: Optional[Callable] = None,
|
||||
) -> Callable:
|
||||
"""Register a new pipeline component factory. Can be used as a decorator
|
||||
|
@ -404,7 +405,7 @@ class Language:
|
|||
assigns=validate_attrs(assigns),
|
||||
requires=validate_attrs(requires),
|
||||
scores=scores,
|
||||
score_weights=score_weights,
|
||||
default_score_weights=default_score_weights,
|
||||
retokenizes=retokenizes,
|
||||
)
|
||||
cls.set_factory_meta(name, factory_meta)
|
||||
|
@ -430,7 +431,7 @@ class Language:
|
|||
requires: Iterable[str] = tuple(),
|
||||
retokenizes: bool = False,
|
||||
scores: Iterable[str] = tuple(),
|
||||
score_weights: Dict[str, float] = SimpleFrozenDict(),
|
||||
default_score_weights: Dict[str, float] = SimpleFrozenDict(),
|
||||
func: Optional[Callable[[Doc], Doc]] = None,
|
||||
) -> Callable:
|
||||
"""Register a new pipeline component. Can be used for stateless function
|
||||
|
@ -465,7 +466,7 @@ class Language:
|
|||
requires=requires,
|
||||
retokenizes=retokenizes,
|
||||
scores=scores,
|
||||
score_weights=score_weights,
|
||||
default_score_weights=default_score_weights,
|
||||
func=factory_func,
|
||||
)
|
||||
return component_func
|
||||
|
@ -1501,7 +1502,7 @@ class FactoryMeta:
|
|||
requires: Iterable[str] = tuple()
|
||||
retokenizes: bool = False
|
||||
scores: Iterable[str] = tuple()
|
||||
score_weights: Dict[str, float] = None
|
||||
default_score_weights: Dict[str, float] = None
|
||||
|
||||
|
||||
def _get_config_overrides(
|
||||
|
|
|
@ -43,8 +43,8 @@ DEFAULT_PARSER_MODEL = Config().from_str(default_model_config)["model"]
|
|||
"min_action_freq": 30,
|
||||
"model": DEFAULT_PARSER_MODEL,
|
||||
},
|
||||
scores=["dep_uas", "dep_las", "sents_f"],
|
||||
score_weights={"dep_uas": 0.5, "dep_las": 0.5, "sents_f": 0.0},
|
||||
scores=["dep_uas", "dep_las", "dep_las_per_type", "sents_p", "sents_r", "sents_f"],
|
||||
default_score_weights={"dep_uas": 0.5, "dep_las": 0.5, "sents_f": 0.0},
|
||||
)
|
||||
def make_parser(
|
||||
nlp: Language,
|
||||
|
@ -115,4 +115,5 @@ cdef class DependencyParser(Parser):
|
|||
results.update(Scorer.score_spans(examples, "sents", **kwargs))
|
||||
results.update(Scorer.score_deps(examples, "dep", getter=dep_getter,
|
||||
ignore_labels=("p", "punct"), **kwargs))
|
||||
del results["sents_per_type"]
|
||||
return results
|
||||
|
|
|
@ -23,6 +23,8 @@ PatternType = Dict[str, Union[str, List[Dict[str, Any]]]]
|
|||
"overwrite_ents": False,
|
||||
"ent_id_sep": DEFAULT_ENT_ID_SEP,
|
||||
},
|
||||
scores=["ents_p", "ents_r", "ents_f", "ents_per_type"],
|
||||
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0},
|
||||
)
|
||||
def make_entity_ruler(
|
||||
nlp: Language,
|
||||
|
@ -305,6 +307,9 @@ class EntityRuler:
|
|||
label = f"{label}{self.ent_id_sep}{ent_id}"
|
||||
return label
|
||||
|
||||
def score(self, examples, **kwargs):
|
||||
return Scorer.score_spans(examples, "ents", **kwargs)
|
||||
|
||||
def from_bytes(
|
||||
self, patterns_bytes: bytes, exclude: Iterable[str] = tuple()
|
||||
) -> "EntityRuler":
|
||||
|
|
|
@ -39,7 +39,9 @@ DEFAULT_MORPH_MODEL = Config().from_str(default_model_config)["model"]
|
|||
@Language.factory(
|
||||
"morphologizer",
|
||||
assigns=["token.morph", "token.pos"],
|
||||
default_config={"model": DEFAULT_MORPH_MODEL}
|
||||
default_config={"model": DEFAULT_MORPH_MODEL},
|
||||
scores=["pos_acc", "morph_acc", "morph_per_feat"],
|
||||
default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5},
|
||||
)
|
||||
def make_morphologizer(
|
||||
nlp: Language,
|
||||
|
|
|
@ -41,8 +41,9 @@ DEFAULT_NER_MODEL = Config().from_str(default_model_config)["model"]
|
|||
"min_action_freq": 30,
|
||||
"model": DEFAULT_NER_MODEL,
|
||||
},
|
||||
scores=["ents_f", "ents_r", "ents_p"],
|
||||
score_weights={"ents_f": 1.0, "ents_r": 0.0, "ents_p": 0.0},
|
||||
scores=["ents_p", "ents_r", "ents_f", "ents_per_type"],
|
||||
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0},
|
||||
|
||||
)
|
||||
def make_ner(
|
||||
nlp: Language,
|
||||
|
|
|
@ -13,7 +13,9 @@ from .. import util
|
|||
@Language.factory(
|
||||
"sentencizer",
|
||||
assigns=["token.is_sent_start", "doc.sents"],
|
||||
default_config={"punct_chars": None}
|
||||
default_config={"punct_chars": None},
|
||||
scores=["sents_p", "sents_r", "sents_f"],
|
||||
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
||||
)
|
||||
def make_sentencizer(
|
||||
nlp: Language,
|
||||
|
@ -132,7 +134,9 @@ class Sentencizer(Pipe):
|
|||
doc.c[j].sent_start = -1
|
||||
|
||||
def score(self, examples, **kwargs):
|
||||
return Scorer.score_spans(examples, "sents", **kwargs)
|
||||
results = Scorer.score_spans(examples, "sents", **kwargs)
|
||||
del results["sents_per_type"]
|
||||
return results
|
||||
|
||||
def to_bytes(self, exclude=tuple()):
|
||||
"""Serialize the sentencizer to a bytestring.
|
||||
|
|
|
@ -35,7 +35,7 @@ DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"]
|
|||
assigns=["token.is_sent_start"],
|
||||
default_config={"model": DEFAULT_SENTER_MODEL},
|
||||
scores=["sents_p", "sents_r", "sents_f"],
|
||||
score_weights={"sents_p": 0.0, "sents_r": 0.0, "sents_f": 1.0},
|
||||
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
||||
)
|
||||
def make_senter(nlp: Language, name: str, model: Model):
|
||||
return SentenceRecognizer(nlp.vocab, model, name)
|
||||
|
@ -108,7 +108,9 @@ class SentenceRecognizer(Tagger):
|
|||
raise NotImplementedError
|
||||
|
||||
def score(self, examples, **kwargs):
|
||||
return Scorer.score_spans(examples, "sents", **kwargs)
|
||||
results = Scorer.score_spans(examples, "sents", **kwargs)
|
||||
del results["sents_per_type"]
|
||||
return results
|
||||
|
||||
def to_bytes(self, exclude=tuple()):
|
||||
serialize = {}
|
||||
|
|
|
@ -34,6 +34,9 @@ DEFAULT_SIMPLE_NER_MODEL = Config().from_str(default_model_config)["model"]
|
|||
"simple_ner",
|
||||
assigns=["doc.ents"],
|
||||
default_config={"labels": [], "model": DEFAULT_SIMPLE_NER_MODEL},
|
||||
scores=["ents_p", "ents_r", "ents_f", "ents_per_type"],
|
||||
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0},
|
||||
|
||||
)
|
||||
def make_simple_ner(
|
||||
nlp: Language, name: str, model: Model, labels: Iterable[str]
|
||||
|
@ -173,6 +176,9 @@ class SimpleNER(Pipe):
|
|||
def init_multitask_objectives(self, *args, **kwargs):
|
||||
pass
|
||||
|
||||
def score(self, examples, **kwargs):
|
||||
return Scorer.score_spans(examples, "ents", **kwargs)
|
||||
|
||||
|
||||
def _has_ner(example: Example) -> bool:
|
||||
for ner_tag in example.get_aligned_ner():
|
||||
|
|
|
@ -40,8 +40,8 @@ DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"]
|
|||
"tagger",
|
||||
assigns=["token.tag"],
|
||||
default_config={"model": DEFAULT_TAGGER_MODEL, "set_morphology": False},
|
||||
scores=["tag_acc", "pos_acc"],
|
||||
score_weights={"tag_acc": 0.5, "pos_acc": 0.5},
|
||||
scores=["tag_acc", "pos_acc", "lemma_acc"],
|
||||
default_score_weights={"tag_acc": 1.0},
|
||||
)
|
||||
def make_tagger(nlp: Language, name: str, model: Model, set_morphology: bool):
|
||||
return Tagger(nlp.vocab, model, name, set_morphology=set_morphology)
|
||||
|
|
|
@ -56,6 +56,8 @@ dropout = null
|
|||
"textcat",
|
||||
assigns=["doc.cats"],
|
||||
default_config={"labels": [], "model": DEFAULT_TEXTCAT_MODEL},
|
||||
scores=["cats_score", "cats_score_desc", "cats_p", "cats_r", "cats_f", "cats_macro_f", "cats_macro_auc", "cats_f_per_type", "cats_macro_auc_per_type"],
|
||||
default_score_weights={"cats_score": 1.0},
|
||||
)
|
||||
def make_textcat(
|
||||
nlp: Language, name: str, model: Model, labels: Iterable[str]
|
||||
|
|
|
@ -343,6 +343,10 @@ def test_language_factories_invalid():
|
|||
[{"a": 100, "b": 400}, {"c": 0.5, "d": 0.5}],
|
||||
{"a": 0.1, "b": 0.4, "c": 0.25, "d": 0.25},
|
||||
),
|
||||
(
|
||||
[{"a": 0.5, "b": 0.5}, {"b": 1.0}],
|
||||
{"a": 0.25, "b": 0.75},
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_language_factories_combine_score_weights(weights, expected):
|
||||
|
@ -354,28 +358,24 @@ def test_language_factories_combine_score_weights(weights, expected):
|
|||
def test_language_factories_scores():
|
||||
name = "test_language_factories_scores"
|
||||
func = lambda doc: doc
|
||||
scores1 = ["a1", "a2"]
|
||||
weights1 = {"a1": 0.5, "a2": 0.5}
|
||||
scores2 = ["b1", "b2", "b3"]
|
||||
weights2 = {"b1": 0.2, "b2": 0.7, "b3": 0.1}
|
||||
Language.component(
|
||||
f"{name}1", scores=scores1, score_weights=weights1, func=func,
|
||||
f"{name}1", scores=list(weights1), default_score_weights=weights1, func=func,
|
||||
)
|
||||
Language.component(
|
||||
f"{name}2", scores=scores2, score_weights=weights2, func=func,
|
||||
f"{name}2", scores=list(weights2), default_score_weights=weights2, func=func,
|
||||
)
|
||||
meta1 = Language.get_factory_meta(f"{name}1")
|
||||
assert meta1.scores == scores1
|
||||
assert meta1.score_weights == weights1
|
||||
assert meta1.default_score_weights == weights1
|
||||
meta2 = Language.get_factory_meta(f"{name}2")
|
||||
assert meta2.scores == scores2
|
||||
assert meta2.score_weights == weights2
|
||||
assert meta2.default_score_weights == weights2
|
||||
nlp = Language()
|
||||
nlp._config["training"]["scores"] = ["speed"]
|
||||
nlp._config["training"]["score_weights"] = {}
|
||||
nlp.add_pipe(f"{name}1")
|
||||
nlp.add_pipe(f"{name}2")
|
||||
cfg = nlp.config["training"]
|
||||
assert cfg["scores"] == ["speed", *scores1, *scores2]
|
||||
assert cfg["scores"] == sorted(["speed", *list(weights1.keys()), *list(weights2.keys())])
|
||||
expected_weights = {"a1": 0.25, "a2": 0.25, "b1": 0.1, "b2": 0.35, "b3": 0.05}
|
||||
assert cfg["score_weights"] == expected_weights
|
||||
|
|
|
@ -1139,9 +1139,10 @@ def combine_score_weights(weights: List[Dict[str, float]]) -> Dict[str, float]:
|
|||
"""
|
||||
result = {}
|
||||
for w_dict in weights:
|
||||
# We need to account for weights that don't sum to 1.0 and normalize the
|
||||
# score weights accordingly, then divide score by the number of components
|
||||
total = sum([w for w in w_dict.values()])
|
||||
# We need to account for weights that don't sum to 1.0 and normalize
|
||||
# the score weights accordingly, then divide score by the number of
|
||||
# components.
|
||||
total = sum(w_dict.values())
|
||||
for key, value in w_dict.items():
|
||||
weight = round(value / total / len(weights), 2)
|
||||
result[key] = result.get(key, 0.0) + weight
|
||||
|
|
Loading…
Reference in New Issue
Block a user