mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-19 20:52:23 +03:00
Run black
This commit is contained in:
parent
bc081c24fa
commit
8bd0474730
|
@ -24,7 +24,7 @@ def build_coref(
|
||||||
# the token count.
|
# the token count.
|
||||||
mention_limit_ratio: float = 0.4,
|
mention_limit_ratio: float = 0.4,
|
||||||
max_span_width: int = 20,
|
max_span_width: int = 20,
|
||||||
antecedent_limit: int = 50
|
antecedent_limit: int = 50,
|
||||||
):
|
):
|
||||||
dim = tok2vec.get_dim("nO") * 3
|
dim = tok2vec.get_dim("nO") * 3
|
||||||
|
|
||||||
|
@ -90,15 +90,14 @@ def build_width_scorer(max_span_width, hidden_size, feature_embed_size=20):
|
||||||
>> Linear(nI=hidden_size, nO=1)
|
>> Linear(nI=hidden_size, nO=1)
|
||||||
)
|
)
|
||||||
span_width_prior.initialize()
|
span_width_prior.initialize()
|
||||||
model = Model(
|
model = Model("WidthScorer", forward=width_score_forward, layers=[span_width_prior])
|
||||||
"WidthScorer",
|
|
||||||
forward=width_score_forward,
|
|
||||||
layers=[span_width_prior])
|
|
||||||
model.set_ref("width_prior", span_width_prior)
|
model.set_ref("width_prior", span_width_prior)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def width_score_forward(model, embeds: SpanEmbeddings, is_train) -> Tuple[Floats1d, Callable]:
|
def width_score_forward(
|
||||||
|
model, embeds: SpanEmbeddings, is_train
|
||||||
|
) -> Tuple[Floats1d, Callable]:
|
||||||
# calculate widths, subtracting 1 so it's 0-index
|
# calculate widths, subtracting 1 so it's 0-index
|
||||||
w_ffnn = model.get_ref("width_prior")
|
w_ffnn = model.get_ref("width_prior")
|
||||||
idxs = embeds.indices
|
idxs = embeds.indices
|
||||||
|
@ -115,6 +114,7 @@ def width_score_forward(model, embeds: SpanEmbeddings, is_train) -> Tuple[Floats
|
||||||
|
|
||||||
return wscores, width_score_backward
|
return wscores, width_score_backward
|
||||||
|
|
||||||
|
|
||||||
# model converting a Doc/Mention to span embeddings
|
# model converting a Doc/Mention to span embeddings
|
||||||
# get_mentions: Callable[Doc, Pairs[int]]
|
# get_mentions: Callable[Doc, Pairs[int]]
|
||||||
def build_span_embedder(
|
def build_span_embedder(
|
||||||
|
@ -123,8 +123,9 @@ def build_span_embedder(
|
||||||
) -> Model[Tuple[List[Floats2d], List[Doc]], SpanEmbeddings]:
|
) -> Model[Tuple[List[Floats2d], List[Doc]], SpanEmbeddings]:
|
||||||
|
|
||||||
with Model.define_operators({">>": chain, "|": concatenate}):
|
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||||
span_reduce = (extract_spans() >>
|
span_reduce = extract_spans() >> (
|
||||||
(reduce_first() | reduce_last() | reduce_mean()))
|
reduce_first() | reduce_last() | reduce_mean()
|
||||||
|
)
|
||||||
model = Model(
|
model = Model(
|
||||||
"SpanEmbedding",
|
"SpanEmbedding",
|
||||||
forward=span_embeddings_forward,
|
forward=span_embeddings_forward,
|
||||||
|
@ -290,6 +291,7 @@ def build_take_vecs() -> Model[SpanEmbeddings, Floats2d]:
|
||||||
def take_vecs_forward(model, inputs: SpanEmbeddings, is_train) -> Floats2d:
|
def take_vecs_forward(model, inputs: SpanEmbeddings, is_train) -> Floats2d:
|
||||||
idxs = inputs.indices
|
idxs = inputs.indices
|
||||||
lens = inputs.vectors.lengths
|
lens = inputs.vectors.lengths
|
||||||
|
|
||||||
def backprop(dY: Floats2d) -> SpanEmbeddings:
|
def backprop(dY: Floats2d) -> SpanEmbeddings:
|
||||||
vecs = Ragged(dY, lens)
|
vecs = Ragged(dY, lens)
|
||||||
return SpanEmbeddings(idxs, vecs)
|
return SpanEmbeddings(idxs, vecs)
|
||||||
|
@ -350,10 +352,10 @@ def ant_scorer_forward(
|
||||||
# This will take the log of 0, which causes a warning, but we're doing
|
# This will take the log of 0, which causes a warning, but we're doing
|
||||||
# it on purpose so we can just ignore the warning.
|
# it on purpose so we can just ignore the warning.
|
||||||
with warnings.catch_warnings():
|
with warnings.catch_warnings():
|
||||||
warnings.filterwarnings('ignore', category=RuntimeWarning)
|
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
||||||
mask = xp.log(
|
mask = xp.log(
|
||||||
(xp.expand_dims(ant_range, 1) - xp.expand_dims(ant_range, 0)) >= 1
|
(xp.expand_dims(ant_range, 1) - xp.expand_dims(ant_range, 0)) >= 1
|
||||||
).astype('f')
|
).astype("f")
|
||||||
|
|
||||||
scores = pw_prod + pw_sum + mask
|
scores = pw_prod + pw_sum + mask
|
||||||
|
|
||||||
|
|
|
@ -79,7 +79,9 @@ def make_coref(
|
||||||
) -> "CoreferenceResolver":
|
) -> "CoreferenceResolver":
|
||||||
"""Create a CoreferenceResolver component."""
|
"""Create a CoreferenceResolver component."""
|
||||||
|
|
||||||
return CoreferenceResolver(nlp.vocab, model, name, span_cluster_prefix=span_cluster_prefix)
|
return CoreferenceResolver(
|
||||||
|
nlp.vocab, model, name, span_cluster_prefix=span_cluster_prefix
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class CoreferenceResolver(TrainablePipe):
|
class CoreferenceResolver(TrainablePipe):
|
||||||
|
@ -308,7 +310,7 @@ class CoreferenceResolver(TrainablePipe):
|
||||||
top_gscores = ops.asarray2f(top_gscores)
|
top_gscores = ops.asarray2f(top_gscores)
|
||||||
|
|
||||||
with warnings.catch_warnings():
|
with warnings.catch_warnings():
|
||||||
warnings.filterwarnings('ignore', category=RuntimeWarning)
|
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
||||||
log_marg = ops.softmax(cscores + ops.xp.log(top_gscores), axis=1)
|
log_marg = ops.softmax(cscores + ops.xp.log(top_gscores), axis=1)
|
||||||
log_norm = ops.softmax(cscores, axis=1)
|
log_norm = ops.softmax(cscores, axis=1)
|
||||||
grad = log_norm - log_marg
|
grad = log_norm - log_marg
|
||||||
|
|
Loading…
Reference in New Issue
Block a user